Improved motion correction for functional MRI using an omnibus regression model

Vyom Raval

International Symposium on Biomedical Imaging
April 6th, 2020

Student Intern
Bioinformatics Department
PI: Dr. Albert Montillo

Vyom.Raval@UTSouthwestern.edu
Head motion is a significant source of noise in fMRI. It can:
- Account for over 30-90% of the fMRI signal
- Cause distance-dependent artifacts in functional connectivity
- Act as a major confounder. Systematically affect data from:
 - Children
 - Elderly
 - Diseases that cause increased head movement

Power et al. (2015)
Ciric et al. (2018)
Removing motion artifact is highly nontrivial
- More pipelines than papers!
- Motion correction involve a sequence of regression steps
- Artifact removed by a linear regression of data on nuisance covariates

Ciric et al. (2018)
Background: The problem with previous approaches

\[y = X\beta + e \]

- A sequence of linear filtering operations can reintroduce artifacts
 - Regression = Projection onto subspace
 - Sequential projections = Orthogonality lost

\[
\begin{pmatrix}
Y_1 \\
Y_2 \\
Y_N
\end{pmatrix} =
\begin{pmatrix}
X'_{(t_1)} & X^2_{(t_1)} & \ldots & X^L_{(t_1)} \\
X'_{(t_2)} & X^2_{(t_2)} & \ldots & X^L_{(t_2)} \\
X'_{(tN)} & X^2_{(tN)} & \ldots & X^L_{(tN)}
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\
\beta_2 \\
\beta_L
\end{pmatrix} +
\begin{pmatrix}
\varepsilon_{(t_1)} \\
\varepsilon_{(t_2)} \\
\varepsilon_{(tN)}
\end{pmatrix}
\]

\[e_1 = y_1 - X_1\beta_1 \]
\[e_2 = e_1 - X_2\beta_2 \]
Goal of this work

- Create an omnibus regression model that
 - combines state-of-the-art artifact suppression algorithms
 - avoids reintroduction of artifacts from sequential regression

- Quantitatively evaluate this model against other commonly used pipelines on a large clinically relevant dataset ($n = 151$)
Data: Subjects

- **151 subjects** from the Parkinson’s Progression Markers Initiative (PPMI) database
 - 3T Siemens scanner
 - GE-EPI pulse sequence
 - TE=25 ms
 - TR=2400 ms,
 - resolution 68 x 66 x 40 voxels
 - voxel size 3.294 x 3.294 x 3.3 mm
 - scan duration 504 s

- Diseased and non-diseased subjects considered to capture diversity of motion artifact
Methods: Preprocessing

- **Standard steps for fMRI analysis**

 - **Affine realignment**
 - FMRIB’s Linear Image Registration Tool (MCFLIRT)
 - **Skull stripping**
 - FSL Brain Extraction Tool (BET)
 - Analysis of Functional Neuroimages (AFNI) 3dAutomask
 - **Spatial normalization**
 - Coregistration with EPI template in MNI space
 - Symmetric Normalization in Advanced Normalization Tools (ANTS)
 - **Smoothing**
 - 6 mm FWHM Gaussian kernel
 - **<Motion Correction model>**
 - **Functional Connectivity**
 - Gordon 333 ROI atlas
Methods: Nuisance regressors

- Three sets of nuisance regressors:
 - Head motion parameters (HMP)
 - ICA motion components (AROMA)
 - Physiological regressors (PHYSIO)

Ciric et al. (2018)
Patriat et al. (2017)
Pruim et al. (2015)
Methods: Motion correction pipelines

- 4 Pipelines compared
 - Baseline
 - No motion correction

- HMP > AROMA > Physio
 - \(e = ((y - X_{HMP}\beta_1) - X_{AROMA}\beta_2) - X_{Physio}\beta_3 \)

- AROMA > HMP > Physio
 - \(e = ((y - X_{AROMA}\beta_4) - X_{HMP}\beta_5) - X_{Physio}\beta_6 \)

- [AROMA, HMP, Physio]
 - \(e = y - [X_{HMP}X_{AROMA}X_{Physio}]\beta_7 \)
Methods: Quality assessment

- **Framewise Displacement (FD)**
 - To quantify subject’s head motion

 \[
 FD(t) = |d_x(t) - d_x(t-1)| + |d_y(t) - d_y(t-1)| \\
 + |d_z(t) - d_z(t-1)| + |\theta_x(t) - \theta_x(t-1)| \\
 + |\theta_y(t) - \theta_y(t-1)| + |\theta_z(t) - \theta_z(t-1)|
 \]

- **QC-FC correlation (FC-edge wise)**
 - Pearson’s correlation between mean FD and FC edges

Subject 1 Subject 2 Subject n

Pearson’s r

Subject 1 FD Subject 2 FD Subject n FD
Methods: Quality assessment

- **QC-FC distance dependence** *(QC-FC-edge wise)*
 - Spearman’s rank correlation between QC-FC correlation of each edge and the Euclidean length of the edge in the brain

- **QC-FC and QC-FC distance dependence metrics** extensively used previously

Parkes et al. (2018)
Power et al. (2015)
Results: QC-FC

- All methods performed similarly at reducing motion noise from functional connectivity

![Graph showing motion noise reduction across different pipelines](image)
Results: QC-FC distance dependence

- Omnibus model alone eliminates all significant distance-dependent noise
Discussion: Omnibus regression model empirically robust

- **Motion correction is essential**
 - Without it, baseline images and derived functional connectivity measures are heavily contaminated

- **Omnibus model removed distance-dependent artifact**
 - The only model in the comparison to do so successfully
 - Sequential regression pipelines were significantly contaminated

- **No pipeline could completely remove motion artifact**
 - Sequential and omnibus pipelines had similar median QC-FC
 - There is no ground truth
Limitations

- **Single dataset:**
 - Fairly large (151 subjects) and diverse
 - Replication on independent dataset would further confirm findings

- **No ground truth:**
 - Simulation experiments could address this
Conclusions

- Benefits of omnibus regression model:
 - Significantly reduces distance-dependent artifact compared to standard sequential pipelines
 - Can be used to reduce confounds in fMRI analyses