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Background: Parkinson’s Disease

◼ Parkinson’s Disease (PD) is a 

devastating neurodegenerative 

disease characterized by resting 

tremor, limb stiffness, and 

bradykinesia
◼ Second most common 

neurodegenerative disorder

◼ Current treatments (such as 

dopaminergic drugs) alleviate 

symptoms are not cures
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Background: Problem

◼ There is no clinically accepted method to predict individual progression 

rate.
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Goal of this work

◼ A model that can predict individual progression rate and accurately 

identify fast progressors.

◼ This would allow:
◼ Informing patient decision making and patient management

◼ Expedite the identification of a disease modifying therapy

◼ Drug trials are expensive
◼ Average total cost of developing a new drug is between $2 to $3 billion1.

◼ Identifying fast progressors can enrich trial selection and enabling accurate 

identification of effective disease modifying candidate drugs within the 

duration of a clinical trial (typically 2 years)
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1. https://www.jhsph.edu/news/news-releases/2018/cost-of-clinical-trials-for-new-drug-FDA-approval-are-fraction-of-total-tab.html



Data: Subjects

◼ 160 PD subjects from the NIH-NINDS funded Parkinson’s Disease Biomarkers 

Program (PDBP)
◼ Followed longitudinally for 2 years at UTSW by Dr. Richard B. Dewey Jr.

◼ Disease severity measured by the Movement Disorder Society revision of the Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS)
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117 male
90 female

Age histogram



Data: Prediction target

◼ MDS-UPDRS is a four-part assessment of PD severity conducted by a trained 

examiner

◼ Part III: Motor Examination
◼ 18 sections

◼ e.g.- Speech, facial expression, gait

◼ Scale of 0 (normal) to 4 (severe)

◼ Conducted when patients on-medication

◼ To eliminate rater as a confound, one rater 

was used throughout the study
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Goetz, Christopher G., et al. (2008). "Movement Disorder Society‐sponsored revision of the Unified 

Parkinson's Disease Rating Scale (MDS‐UPDRS): scale presentation and clinimetric testing results." 



Data: Prediction target

3 targets are predicted in this research:
𝟐 𝒚𝒆𝒂𝒓𝒔 MDS-UPDRS Part III

𝟐 𝒚𝒆𝒂𝒓𝒔 − 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆 MDS-UPDRS Part III  
𝟐 𝒚𝒆𝒂𝒓𝒔 − 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆

𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆
MDS-UPDRS Part III
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1.
2.
3. 



Data: Features

◼ Previous literature has found gait and postural stability characteristics to be 

associated with current risk1, progression2, and diagnosis3
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Dewey, D. Campbell, et al. (2014) "Automated gait and 

balance parameters diagnose and correlate with severity in 

Parkinson disease."

1. Rovini, E. et al. (2017) How wearable sensors can support parkinson’s disease diagnosis and 

treatment: A systematic review. 

2. Galna, B et al. (2015) Progression of Gait Dysfunction in Incident Parkinson’s Disease: Impact of 

Medication and Phenotype. 

3. Jankovic, J. (2008) Parkinson’s disease: Clinical features and diagnosis. 



Data: Features

◼ Biomechanical gait and postural stability measures
◼ Six movement sensors (accelerometer, gyroscope, and magnetometer)

◼ APDM Mobility Lab using Opals® sensors

◼ Conducted when patient is on-medication

◼ 2 mobility tasks:
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◼ instrumented Timed-Up-and-Go (iTUG) test
◼ Subjects stand up, walk 6m, turn 180°

walk back to chair and sit down.

◼ instrumented Sway (iSway) test

◼ Subjects stand still with hands 

across their chests and feet 

positioned a set distance apart

https://www.apdm.com/mobility/



Data: Features

◼ iTUG video:
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https://www.apdm.com/mobility/



Data: Features

◼ Clinical and demographic features
◼ Age

◼ Gender

◼ Baseline MDS-UPDRS Part III scores

◼ Levodopa Equivalent Daily Dose (LEDD)

◼ Montreal Cognitive Assessment (MOCA) score
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Methods: Feature Set combinations
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1 −
𝐿𝑒𝑓𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑅𝑖𝑔ℎ𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒



Methods: Partitioning, Modeling, and Feature Importance

◼ Partitioning:
◼ Nested K-fold cross validation with 3 inner and 3 outer folds

◼ Optimization:
◼ XGBoost and Feed Forward Neural Network (NNs) models used

◼ Hyperparameter optimization and model selection on inner folds using random search

◼ Random search of hyperparameter space ensures unbiased model tuning largely 

independent of ML experience 

◼ Performance evaluated using R2 score on held-out partitions

◼ Feature Importance:
◼ Feature permutation importance analysis

◼ Each feature randomly permuted 100 times and decrease in performance measured
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Results on test set : Clinical measures have most predictive power
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◼ Comparable to 41% performance 

achieved by Latourelle et al. 

(2017) on validation set

◼ Our model also achieved a PPV of 

71% in identifying fast 

progressors

◼ Biomechanical measures alone 

were also able to explain a 

substantial 21% of variance. 

◼ First study to show biomechanical 

measures have prognostic value 

for future severity.



Results: Baseline MDS-UPDRS III scores most important
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◼ Important clinical measures:
◼ Upper extremity, hand, neck, and total 

MDS-UPDRS III scores rank highest in 

feature importance



Results: 6mo-Baseline gait features also important
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◼ Important biomechanical measures:
◼ 6mo-Baseline Gait measures rank 

highest



Strengths, Limitations and Future work
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◼ Strengths
◼ This is a comparatively large (160 subjects) study performed with rigorous nested cross-

validation.

◼ Limitations: Single dataset:
◼ Replication on independent dataset would further confirm findings

◼ Future work: learn to construct biomechanical features from raw sensor data:
◼ iTUG and iSway measures were constructed from the sensor data using the APDM Mobility 

Lab software

◼ These pre-engineered features may lose some information that could be used by the 

predictive models

◼ Future studies on analyzing the raw sensor data may further boost predictive power



Conclusions
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◼ Potential to enrich clinical trials:
◼ Our best predictive model achieves a 71% PPV in identifying fast progressors on held out test 

data not used in training or validation.

◼ This can be used to expedite clinical trials to more rapidly identify a disease modifying drug

◼ Predictive power of biomechanical measures:
◼ This is the first study to show the predictive power of biomechanical measures using machine 

learning
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