Prediction of individual progression rate in Parkinson’s disease using clinical measures and biomechanical measures of gait and postural stability

Vyom Raval, Kevin P. Nguyen, Ashley Gerald, Richard B. Dewey Jr., Albert Montillo

45th International Conference on Acoustics, Speech, and Signal Processing
May 8, 2020

Student Intern
Bioinformatics Department
PI: Dr. Albert Montillo

Senior, Neuroscience
School of Behavioral & Brain Sciences
Background: Parkinson’s Disease

- Parkinson’s Disease (PD) is a devastating neurodegenerative disease characterized by resting tremor, limb stiffness, and bradykinesia
- Second most common neurodegenerative disorder
- Current treatments (such as dopaminergic drugs) alleviate symptoms are not cures
Background: Problem

- There is no clinically accepted method to predict individual progression rate.
Goal of this work

- A model that can predict individual progression rate and accurately identify fast progressors.

- This would allow:
 - Informing patient decision making and patient management
 - Expedite the identification of a disease modifying therapy
 - Drug trials are expensive
 - Average total cost of developing a new drug is between $2 to $3 billion\(^1\).

- Identifying fast progressors can enrich trial selection and enabling accurate identification of effective disease modifying candidate drugs within the duration of a clinical trial (typically 2 years)

Data: Subjects

- **160 PD subjects** from the NIH-NINDS funded Parkinson’s Disease Biomarkers Program (PDBP)
 - Followed longitudinally for 2 years at UTSW by Dr. Richard B. Dewey Jr.
 - Disease severity measured by the Movement Disorder Society revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)

Age histogram

- 117 male
- 90 female
MDS-UPDRS is a four-part assessment of PD severity conducted by a trained examiner

Part III: Motor Examination
- 18 sections
- e.g. Speech, facial expression, gait
- Scale of 0 (normal) to 4 (severe)

Conducted when patients on-medication

To eliminate rater as a confound, one rater was used throughout the study

3 targets are predicted in this research:
1. 2 years MDS-UPDRS Part III
2. 2 years – Baseline MDS-UPDRS Part III
3. 2 years – Baseline MDS-UPDRS Part III
Data: Features

- Previous literature has found gait and postural stability characteristics to be associated with current risk\(^1\), progression\(^2\), and diagnosis\(^3\).

Fig. 2. Plots of the sway path in anteroposterior and mediolateral directions in a control subject (A) and two PD subjects with clinically normal balance (B, C).

Data: Features

- Biomechanical gait and postural stability measures
 - Six movement sensors (accelerometer, gyroscope, and magnetometer)
 - APDM Mobility Lab using Opals® sensors
 - Conducted when patient is on-medication
 - 2 mobility tasks:
 - instrumented Timed-Up-and-Go (iTUG) test
 - Subjects stand up, walk 6m, turn 180°, walk back to chair and sit down.
 - instrumented Sway (iSway) test
 - Subjects stand still with hands across their chests and feet positioned a set distance apart

https://www.apdm.com/mobility/
Data: Features

- iTUG video: https://www.apdm.com/mobility/
Data: Features

- Clinical and demographic features
 - Age
 - Gender
 - Baseline MDS-UPDRS Part III scores
 - Levodopa Equivalent Daily Dose (LEDD)
 - Montreal Cognitive Assessment (MOCA) score
Methods: Feature Set combinations

<table>
<thead>
<tr>
<th>Feature Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline iTUG & iSway (148)</td>
</tr>
<tr>
<td>6mo-Baseline iTUG & iSway (148)</td>
</tr>
<tr>
<td>Asymmetric Baseline iTUG & iSway (22)</td>
</tr>
<tr>
<td>Asymmetric 6mo-Baseline iTUG & iSway (22)</td>
</tr>
<tr>
<td>Clinical measures (40)</td>
</tr>
</tbody>
</table>

\[
1 - \frac{\text{Left measure}}{\text{Right measure}}
\]
Methods: Partitioning, Modeling, and Feature Importance

- **Partitioning:**
 - Nested K-fold cross validation with 3 inner and 3 outer folds

- **Optimization:**
 - XGBoost and Feed Forward Neural Network (NNs) models used
 - Hyperparameter optimization and model selection on inner folds using random search
 - Random search of hyperparameter space ensures unbiased model tuning largely independent of ML experience
 - Performance evaluated using R^2 score on held-out partitions

- **Feature Importance:**
 - Feature permutation importance analysis
 - Each feature randomly permuted 100 times and decrease in performance measured
Results on test set: Clinical measures have most predictive power

- Biomechanical measures alone were also able to explain a substantial 21% of variance.
- First study to show biomechanical measures have prognostic value for future severity.

- Comparable to 41% performance achieved by Latourelle et al. (2017) on validation set
- Our model also achieved a PPV of 71% in identifying fast progressors
Results: Baseline MDS-UPDRS III scores most important

- **Important clinical measures:**
 - Upper extremity, hand, neck, and total MDS-UPDRS III scores rank highest in feature importance
Results: 6mo-Baseline gait features also important

- **Important biomechanical measures:**
 - 6mo-Baseline Gait measures rank highest
Strengths, Limitations and Future work

- **Strengths**
 - This is a comparatively large (160 subjects) study performed with rigorous nested cross-validation.

- **Limitations: Single dataset:**
 - Replication on independent dataset would further confirm findings

- **Future work: learn to construct biomechanical features from raw sensor data:**
 - iTUG and iSway measures were constructed from the sensor data using the APDM Mobility Lab software
 - These pre-engineered features may lose some information that could be used by the predictive models
 - Future studies on analyzing the raw sensor data may further boost predictive power
Conclusions

- **Potential to enrich clinical trials:**
 - Our best predictive model achieves a 71% PPV in identifying fast progressors on held out test data not used in training or validation.
 - This can be used to expedite clinical trials to more rapidly identify a disease modifying drug

- **Predictive power of biomechanical measures:**
 - This is the first study to show the predictive power of biomechanical measures using machine learning
Acknowledgements

Deep Learning for Precision Health lab

Prof Albert Montillo Dr. Son Nguyen Cooper Mellema Kevin Nguyen Alex Treacher Krishna Chitta Dr. Zhiguo Shang Vyom Raval

Contact Email: Vyom.Raval@utdallas.edu

Clinical collaborators

Dr. Richard B. Dewey Jr. Ashley Gerald

Funding:

NIH U01NS082148 NIH R01-AG059288 NIH U01 CA207091-01A1 NIH F31-NS115348
Lyda Hill Foundation Green Fellowship UTSW SURF

UTSouthwestern
Lyda Hill Department of Bioinformatics