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Abstract
In resting-state functional magnetic resonance imaging (rs-fMRI), artefactual signals arising from subject motion can dwarf 
and obfuscate the neuronal activity signal. Typical motion correction approaches involve the generation of nuisance regres-
sors, which are timeseries of non-brain signals regressed out of the fMRI timeseries to yield putatively artifact-free data. 
Recent work suggests that concatenating all regressors into a single regression model is more effective than the sequential 
application of individual regressors, which may reintroduce previously removed artifacts. This work compares 18 motion 
correction pipelines consisting of head motion, independent components analysis, and non-neuronal physiological signal 
regressors in sequential or concatenated combinations. The pipelines are evaluated on a dataset of cognitively normal 
individuals with repeat imaging and on datasets of studies of Autism Spectrum Disorder, Major Depressive Disorder, and 
Parkinson’s Disease. Extensive metrics of motion artifact removal are measured, including resting state network recovery, 
Quality Control-Functional Connectivity (QC-FC) correlation, distance-dependent artifact, network modularity, and test–
retest reliability of multiple rs-fMRI analyses. The results reveal limitations in previously proposed metrics, including the 
QC-FC correlation and modularity quality, and identify more robust artifact removal metrics. The results also reveal limita-
tions in the concatenated regression approach, which is outperformed by the sequential regression approach in the test–retest 
reliability metrics. Finally, pipelines are recommended that perform well based on quantitative and qualitative comparisons 
across multiple datasets and robust metrics. These new insights and recommendations help address the need for effective 
motion artifact correction to reduce noise and confounds in rs-fMRI.

Keywords fMRI · Motion artifact · Pipeline · Preprocessing

Introduction

Resting-state fMRI (rs-fMRI), acquired in the absence of an 
active task, has become a popular method for studies of the 
brain’s intrinsic resting state networks (RSNs) and of func-
tional connectivity (FC) between pairs of neuroanatomical 
regions (Fornito & Bullmore, 2010; Smitha et al., 2017). 
However, analyses of rs-fMRI data are plagued by the pres-
ence of artifacts, which may seriously confound results or 
lead to spurious conclusions. Examples include physiologi-
cal artifacts, where cardiac and respiratory activity cause 
signal fluctuations, and subject motion, which affects the 
image in several ways (Liu, 2016). Motion within an axial 
image slice (i.e. anterior–posterior or left–right) changes 
which brain tissue is captured by each voxel, while motion 
across slices (i.e. superior-inferior) causes spin-history 
effects with complex effects on fMRI signal (Friston et al., 
1996; Liu, 2016). Motion-related signals can explain up to 
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30% of the total signal variance in fMRI, or about 1.6 times 
the signal change of neuronal activity (Bianciardi et al., 
2009; Bright & Murphy, 2015).

These motion artifacts may significantly confound FC 
measures in rs-fMRI (van Dijk et al., 2012). In one highly-
cited example, the apparent relationship between age and 
brain network connectivity strength was found to be sub-
stantially inflated by motion, which itself was strongly cor-
related to subject age (Satterthwaite et al., 2012). Beyond 
FC, motion introduces confounds into most types of rs-fMRI 
analyses, including independent components analysis of 
RSNs, amplitude of low frequency fluctuation (ALFF), and 
fractional ALFF (fALFF) (Satterthwaite et al., 2012). Even 
fMRI acquired with subsecond temporal and spatial resolu-
tion below 3 mm, such as the Human Connectome Project, 
is susceptible to motion artifacts (Burgess et al., 2016). Con-
sequently, there is a clear need for methods to correct for 
motion artifacts in rs-fMRI and to mitigate spurious findings 
from motion-contaminated analyses.

Measurement of Motion Artifact Contamination

Power et al. have defined metrics to quantify the efficacy 
of motion artifact correction methods (Power et al., 2015). 
These include the Quality Control-Functional Connectiv-
ity (QC-FC) metric, measuring the correlation between FC 
strength and subject motion (e.g. the mean framewise dis-
placement), and the distance-dependent (QC-FC-dd) met-
ric, which correlates the QC-FC for each inter-node brain 
connection with the connection’s anatomical length. Power 
et al. assert that successful motion artifact correction should 
reduce QC-FC correlation and distance-dependent artifact, 
as motion tends to preferentially inflate short-distance con-
nectivity strength compared to longer-distance connectivity.

Prospective Motion Artifact Correction

Prospective methods for motion artifact correction seek to 
track subject motion in real-time and accordingly adjust 
scanner gradients, pulse frequency, and other imaging 
parameters. Unlike the retrospective methods addressed 
herein, prospective methods are able to directly correct for 
spin history effects and intra-volume distortions (Huang 
et al., 2018; Maziero et al., 2020; Zaitsev et al., 2017). How-
ever, the requisite equipment for these powerful methods, 
such as subject fiducials and an MR-compatible tracking sys-
tem, currently lack widespread availability. It is also difficult 
to directly compare between methods, as there is no way to 
obtain a baseline uncorrected image or to apply multiple 
methods to the same image (Zaitsev et al., 2017). Conse-
quently, this work focuses on retrospective methods which 
are more widely applicable to any image from any scanner 
of ongoing studies and to previously acquired datasets.

Motion Artifact Regression Methods

Retrospective motion artifact suppression methods assume 
the observed fMRI signal can be modeled with an additive 
model consisting of a linear combination of nuisance arti-
facts and the true brain signature. The artifacts are mod-
eled as nuisance regressors, which form a design matrix X 
with dimensions of t timepoints × n regressors. The artifacts 
are regressed out of the fMRI signal Y by solving for the 
coefficients � in the generalized linear model Y = X� + e . 
This leaves the cleaned brain signal e . Many methods have 
been proposed for the construction of nuisance regressors. 
Early approaches generated nuisance regressors from affine 
head motion parameters (HMP) (Power et al., 2012). HMP 
regression alone is insufficient to remove motion artifact 
(Power et al., 2012; Satterthwaite et al., 2012; van Dijk et al., 
2012), since it does not account for longer-lasting spin his-
tory effects (Maknojia et al., 2019). Consequently, additional 
regressor types are needed, such as non-neuronal physiologi-
cal signals measured from cerebrospinal fluid (CSF) and 
white matter (WM) (Power et al., 2012). Automated methods 
such as ICA-AROMA have been proposed to generate these 
regressors in a data-driven manner for more complete arti-
fact removal (Pruim et al., 2015). Different combinations of 
regressors appear to be better at suppressing various types 
of artifacts, such as distance-dependent artifacts vs. global 
(whole-brain) artifacts (Burgess et al., 2016).

Related work

There has been previous work to determine the optimal 
combinations and orderings of nuisance regressors (Ciric 
et al., 2017; Parkes et al., 2018). Ciric et al. compared 
multiple motion correction pipelines, consisting of vari-
ous combinations of regression steps, using metrics such 
as QC-FC, QC-FC-dd, and network modularity (the abil-
ity of FC graphs to separate into networks). The compari-
son by Parkes et al. focused on the QC-FC, QC-FC-dd, 
and test–retest reliability metrics. While both studies 
evaluated multiple pipelines and metrics, there is yet 
room for further work on motion correction pipelines. 
First, these studies evaluated a limited set of metrics, 
specific to FC analyses: QC-FC, QC-FC-dd, test–retest 
reliability of FC, and network modularity. In this work, 
we also measure RSN identifiability in group independ-
ent component analysis (GICA) and seed-based connec-
tivity (SBC) analyses. We also seek to address the hurdle 
of reproducibility in fMRI (Specht, 2019). To investigate 
test–retest reliability across a variety of popularly ana-
lyzed rs-fMRI derivatives, we measure test–retest reli-
ability not only in FC but also in GICA, SBC, fALFF, 
and regional homogeneity (ReHo) analyses. The second 
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gap we address is the use of simultaneous nuisance 
regression. Recent work by Lindquist et al. equates nui-
sance regression steps to geometric projections onto an 
orthogonal subspace (Lindquist et al., 2019). While the 
result (i.e. e , the cleaned data) of each regression step is 
orthogonal to its current regressors (Fig. 1a), subsequent 
nuisance regressors are not necessarily orthogonal to pre-
vious steps (Fig. 1b), and this may reintroduce previously 
removed artifacts (Fig. 1c). Lindquist et al. recommend 
the use of a single regression step, where all nuisance 
regressors are concatenated into the same design matrix. 
Such an approach was not considered in the works of 
Ciric et al. and Parkes et al., so we will compare this 
concatenated regression with sequential regression in 
this work. Finally, our comparisons make use of multiple 
datasets, including data from neuropsychiatric diseases 
where greater subject motion may be encountered such as 
autism and Parkinson’s Disease. This breadth makes our 
results highly applicable to researchers applying rs-fMRI 
to the diseased brain.

Contributions

Through an extensive comparison of fMRI motion correc-
tion pipelines using several metrics and multiple datasets, 
this work makes the following contributions. 1) Limita- 
tions in existing metrics are identified which may mislead 
comparisons of motion correction strategies, and more relia-
ble metrics are proposed. 2) Evidence is presented indicating 
that the basic implementation of a concatenated regression 
does not work well in practice, several workarounds are 
proposed. 3) Pipelines are recommended that perform  
well across multiple sound metrics and that are worth further 
investigation.

Methods

Materials

In this analysis, we used fMRI data from publicly available 
neuroimaging datasets, which were acquired with informed 
written consent and institutional review board approval at 
their respective institutions.

Data from the Human Connectome Project (HCP), one of 
the largest repositories of fMRI of healthy individuals, was 
used to compare the test–retest reliability (TRT) of fMRI 
processed by each of the motion correction pipelines. The 
S1200 release was used, which contains up to 4 resting-state 
scans for each subject (ages 22–35) acquired on the same 
day (van Essen et al., 2012). From this cohort, 50 cognitively 
healthy subjects were selected who had the greatest range in 
mean framewise displacement (mFD) across their scans and 
a minimum mFD below the cohort median (to ensure that at 
least one scan did not contain substantial motion artifact). 
The highest and lowest mFD images of each subject were 
included for analysis. See Figure S1 for mFD distributions.

We additionally analyzed data from 3 datasets includ-
ing subjects with psychiatric or neurodegenerative disease, 
where motion artifacts may be pervasive compared to cog-
nitively normal cohorts. We investigated a cohort of young 
and adolescent autistic subjects aged 8–17 from the ABIDE 
I and ABIDE II databases (Di Martino et al., 2014). Three 
sites with the largest number of fMRI were included in this 
analysis: New York University (NYU) from ABIDE I (117 
subjects), Kennedy Krieger Institute (KKI) from ABIDE 
II (151 subjects), and Georgetown University (GU) from 
ABIDE II (91 subjects). We also analyzed an adult psychi-
atric cohort, consisting of 270 subjects with major depres-
sive disorder and 39 healthy controls aged 18–65 from the 
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EMBARC study (Trivedi et al., 2016). Finally, we obtained 
data for 150 subjects aged 39–83 with Parkinson’s Disease, 
comprising an older cohort with a movement disorder, from 
the PPMI database.1 In total, images from 868 subjects were 
included in this analysis.

Acquisition parameters and scanner information for these 
datasets can be found in Table S1. Demographics can be 
found in Table S2. The HCP images were considerably 
larger than the other datasets, with higher temporal resolu-
tion, spatial resolution, and acquisition time. To make their 
processing accommodate current, modern computer memory 
constraints and to make the TR of the HCP images more 
similar to that of the other datasets (2–2.5 s), we downsam-
pled HCP images from the original TR = 0.72 s to 2.88 s.

Common Preprocessing Pipeline

All images were preprocessed with a common pipeline 
before performing motion correction. For fMRI preprocess-
ing, we realigned volumes to correct for inter-volume head 
motion using the FSL MCFLIRT affine realignment tool 
(Jenkinson et al., 2002). We next performed skull-stripping 
by taking the intersection of brain masks generated by FSL 
BET and AFNI 3dAutomask (Cox, 1996; Smith, 2002). 
Afterwards, we spatially normalized images to the MNI152 
EPI template using ANTs and normalized the intensity range 
to [0, 1000] (Avants et al., 2010). After the application of 
each specific motion correction pipeline, spatial smooth-
ing was applied with a 4 mm FWHM kernel. An exception 
was made for pipelines using ICA-AROMA, where spatial 
smoothing was done before ICA-AROMA following devel-
oper recommendations (Pruim et al., 2015). For T1-weighted 
anatomical MRI, we performed skull-stripping with ROBEX 
and spatially normalized to the MNI152 T1-weighted tem-
plate using ANTs (Avants et al., 2010; Iglesias et al., 2011). 
Finally, we segmented the anatomical MRI into gray matter, 
white matter, and CSF with FSL FAST (Zhang et al., 2001).

Nuisance regressor generation

We generated four sets of nuisance regressors for each indi-
vidual fMRI scan: 1) Head motion parameters (HMP) were 
computed during the affine volume realignment by FSL 
MCFLIRT. Along with the 6 original affine parameters, we 
included the first derivatives, squares, and squared deriva-
tives for a total of 24 HMP regressors (Power et al., 2012; 
Satterthwaite et al., 2013). 2) ICA-AROMA regressors were 
identified with the ICA-AROMA package which decom-
poses the fMRI into independent components and classifies 
them as artifact or non-artifact signal (Pruim et al., 2015). 

3) Physiological artifact (Physio) regressors included the 
mean white matter and CSF signals. Using the procedure 
recommended by (Power et al., 2018), we systematically 
eroded white matter and CSF masks from the anatomical 
image segmentation. The white matter mask was eroded for 
5 cycles or until the next erosion would leave < 5 voxels, 
while the CSF mask was eroded twice. 4) Frequency (Freq) 
regressors were included to implement bandpass filtering at 
0.008–0.08 Hz, using a set of sine and cosine timeseries gen-
erated with AFNI 1dBport (Cox, 1996). Regression using 
these sinusoidal regressors is equivalent to bandpass filtering 
via Fast Fourier Transform yet allows testing simultaneous 
regression with the concatenated model.

Pipelines evaluated

We utilized combinations of these regressors in 18 motion 
correction pipelines (Table 1). These included sequential 
pipelines in which nuisance regression was performed in suc-
cessive steps and concatenated pipelines where all regressors 
were combined into one single design matrix. Within the 
sequential pipelines, we first combined HMP and AROMA 
in different orders (AROMA → HMP and HMP → AROMA), 
then appended Physio, and finally appended Freq. To create 
the concatenated pipelines, we started by combining HMP 
with either Physio or AROMA, then combined all three, 

Table 1  The 18 motion correction pipelines compared in this study. 
The ( →) indicates sequential regression steps while brackets ([x, y, 
z]) indicate concatenated regressors

Pipelines

Baseline: no motion correction
Single algorithm:
     HMP
     AROMA
      Physio
     Freq

Sequential regression:
     AROMA → HMP
     HMP → AROMA
     HMP → AROMA → Physio
     AROMA → HMP → Physio
     HMP → AROMA → Physio → Freq
     AROMA → HMP → Physio → Freq

Concatenated regression:
     [HMP, Physio]
     [HMP, AROMA]
     [HMP, AROMA, Physio]
     [HMP, AROMA, Physio, Freq]
     [HMP, AROMA, Physio] → Freq
      PCR [HMP, AROMA, Physio]

     PCR [HMP, AROMA, Physio, Freq]

1 www. ppmi- info. org/ data

http://www.ppmi-info.org/data
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and then added Freq. We also tested a [HMP, AROMA, 
Physio] → Freq pipeline where the high dimensionality Freq 
regressors were applied in a separate step. Due to the high 
dimensionality of the combined design matrix in the con-
catenated pipelines which may cause suboptimal regression 
model fitting, we tested a principal components regression 
(PCR) approach for the [HMP, AROMA, Physio] and [HMP, 
AROMA, Physio, Freq] pipelines. The concatenated design 
matrix was decomposed into the number of principal com-
ponents that explain > 95% of the variance, and these com-
ponents were used to form the new design matrix.

We performed the regression using a Generalized Linear 
Model (GLM) via the regfilt tool in FSL. For pipelines includ-
ing AROMA, we used the default “nonaggressive” approach, 
in which all AROMA regressors were included in the regres-
sion, including non-artifact regressors, and then the variance 
explained by the artifact regressors was subtracted from the 
data.

Test–retest reliability

After processing the HCP dataset with each motion correc-
tion pipeline, we computed test–retest reliability (TRT) for 
5 types of resting-state measurements between high- and 
low-motion images after motion correction. 1) Functional 
connectivity (FC) was computed by parcellating the images 
with the Gordon 333-region atlas and computing the pair-
wise correlations between mean regional signals (Gordon 
et al., 2016). We quantified TRT by computing the intraclass 
correlation (ICC) between the FC values from high- and 
low-motion images for each subject. 2) Regional homoge-
neity (ReHo) and 3) fractional amplitude of low frequency 
fluctuation (fALFF) were computed as additional meas-
ures of resting-state activity (Zang et al., 2004; Zou et al., 
2008). We computed ReHo and fALFF using the C-PAC 
pipeline, which defines these measures at a specific band 
of 0.01–0.1 Hz (Craddock et al., 2013). Since this filter is 
standardized, we excluded the Freq regressors from each 
motion correction pipeline before computing these meas-
ures. We then computed mean regional values from ReHo 
and fALFF maps and computed ICC in the same manner as 
for FC. The final resting-state measurements were spatial 
maps of the default mode network (DMN), generated from 
each image using 4) group independent components analysis 
(GICA) and 5) seed-based connectivity (SBC). The DMN 
was chosen since it has been shown to be the most reliable 
brain network in resting-state fMRI (Beckmann et al., 2005; 
Franco et al., 2009; Greicius et al., 2003). After generating 
subject-specific DMN maps using GICA and SBC, spatial 
correspondence between the DMN recovered from each sub-
ject’s high motion image vs. their low motion image was 
measured using the Dice similarity coefficient (Thomason 
et al., 2011).

GICA was conducted with the GIFT tool to decom- 
pose fMRI into RSNs (Calhoun et al., 2001). GICA out-
puts a group-level mean decomposition as well as back-
reconstructed subject-level decompositions. The num- 
ber of independent components (ICs) was optimized  
through an unbiased grid search to recover an IC  
with the highest spatial correspondence to a DMN template  
(Thomason et  al., 2011).2 We searched for the optimal 
number of components (k) over the range of 12–24 at the 
pipeline level. Each output IC was then Z-normalized and 
thresholded to create a binarized spatial map. We also  
optimized the threshold (t) via grid search over the range 
0.2–2.0 in steps of 0.1 at the subject level. We selected  
the k x t combination which produced the maximum Dice 
similarity between each IC and the DMN template. Seed-
based connectivity (SBC) maps were generated using a 
6 mm radius seed at the right posterior cingulate cortex at 
MNI coordinate (4, -54, 26) (Franco et al., 2009). We com-
puted connectivity between each voxel and the seed using 
Pearson’s correlation, then converted the correlation values 
to Z-scores using Fisher’s transform and applied a threshold 
at a Z-score of 0.4.

Quality control metrics

After processing the ABIDE, EMBARC, and PPMI data-
sets with each pipeline, we computed the metrics shown in 
Fig. 2. First, we computed FC matrices from each image 
using the Gordon 333-region atlas. We also computed the 
mean framewise displacement (mFD) of each image using 
the HMP timeseries. For a subject’s image containing a 
timeseries of n volumes:

where Δdix,Δdiy,Δdiz are changes in translation between 
volume i and the preceding volume i − 1 in the x, y, z dimen-
sions (e.g. Δdix = dix − d(i−1)x ) and Δ�ix,Δ�iy,Δ�iz are the 
changes in rotation (Power et al., 2012). Rotational displace-
ments were converted from radians to millimeters assuming 
a mean brain radius of 50 mm.

We computed the QC-FC correlation and QC-FC dis-
tance dependence metrics as defined in (Ciric et al., 2017; 
Parkes et al., 2018; Power et al., 2015). For each edge in the 
FC matrix, QC-FC correlation (Fig. 2a) is computed as the 
Pearson’s correlation between the mFD of each subject s and 
their FC strength for that edge

mFD =
1

n

n∑

i=1

|
|Δdix

|
| +

|
||
Δdiy

|||
+ |
|Δdiz

|
| +

|
|Δθix

|
| +

|
||
Δ�iy

|||
+ |
|Δ�iz

|
|

2 https:// brain nexus. com/ resti ng- state- fmri- templ ates/

https://brainnexus.com/resting-state-fmri-templates/
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for each edge e in the FC matrix. The Gordon 333-region 
atlas yields an FC matrix containing 55,278 edges in its 
upper triangle. QC-FC values closer to 0 indicate that FC  
is less correlated with motion. The second metric, QC-FC 

QC-FCv = corr(FCe,s, mFDs)
distance dependence (Fig. 2b), is Spearman’s rank correla-
tion coefficient between the physical length of an edge in the 
brain de and its QC-FC:

corr(QC-FCe, de)
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Fig. 2  Computation steps for the six QC metrics (a)-(f). The frames 
of each subject’s raw fMRI are realigned which gives the head motion 
parameters (three rotation and three translation parameters). The 
image is then processed separately with each of the motion correc-
tion pipelines. The functional connectivity matrix is used to compute 
(a) QC-FC, (b) QC-FC distance dependence, (c) modularity quality, 

and (d) modularity quality-motion correlation. The motion-corrected 
images are also used to compute (e) the Dice Similarity coefficient 
(DSC) between a default mode network (DMN) template from an 
external dataset and the group ICA (GICA) DMN component, and (f) 
the DSC between the template DMN and each subject’s seed-based 
connectivity (SBC) map of the DMN
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A QC-FC distance dependence closer to 0 indicates less 
distance-dependent motion contamination of FC. Spear-
man’s rank correlation was chosen here over Pearson’s 
correlation to better account for non-linear associations 

(Parkes et al., 2018). From the FC matrices, we also com-
puted network modularity Q (Fig. 2c) as described in (Ciric 
et al., 2017; Satterthwaite et al., 2012, 2013). The metric 
Q , bounded in the range [-1/2, 1], measures the difference 

Fig. 3  Comparison of pipeline test–retest reliability using resting-
state fMRI connectivity measures. In this comparison, paired high- 
and low-motion images acquired in the same subject on the same day 
from the Human Connectome Project were used. The comparison is 
limited to the pipelines that include all 4 nuisance regressor types: 
head motion parameters (HMP), AROMA, physiological regressors, 
and frequency. Baseline is the un-corrected data. a) Processed images 
were parcellated with the Gordon 333-ROI atlas and the functional 
connectivity (FC) matrix was computed. The intraclass correlation 
(ICC) was computed between the high- and low-motion FC matrices 
of each subject and the distribution of subjects is shown. ICC was 
also computed for b) Regional homogeneity (ReHo) and c) fractional 

amplitude of low frequency fluctuations (fALFF). Here, frequency fil-
tering was performed in a separate step from motion correction since 
the computation of ReHo and fALFF require their own bandpass fil-
ters. Spatial maps of the DMN were computed using d) group ICA 
and e) seed-based connectivity with a posterior cingulate cortex seed, 
and ICC was computed between high- and low-motion DMN maps 
of each subject. Pipelines significantly different from the top-ranking 
pipeline are annotated: * p < 0.05, ** p < 0.01, *** p < 0.001. In f), 
these 5 metrics are presented as normalized percentage improve-
ment vs. baseline. Pipelines are ordered by mean overall percentage 
improvement
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between the number of within-network edges and the num-
ber of between-network edges (Newman, 2006). The net-
works were detected from each FC matrix using the Louvain 
algorithm, a greedy optimization method that finds the graph 
communities that maximize Q (Blondel et al., 2008). From 
this modularity metric, we derived the modularity quality-
motion correlation metric (Fig. 2d), which is the Spearman’s 
rank correlation between a subject’s Qs and their mFD:

If motion artifacts do not contaminate FC matrices or 
adversely affect the community partitioning of the Louvain algo-
rithm, which in turn affects modularity, there should be no cor-
relation between modularity Q and motion mFD. For all correla-
tion metrics, absolute values were used to index the strength of 
association and the direction of association was not considered.

Additional metrics were derived from resting state net-
work (RSN) analyses of the processed images. As with the 
HCP dataset, we used GICA and SBC to generate DMN 
spatial maps. We created group-level maps using GICA, and 
for SBC, we computed the mean DMN map across all sub-
jects. The GICA and SBC-based maps were binarized and 
the Dice similarity coefficient was computed with respect 
to a DMN template (Thomason et al., 2011). The binariza-
tion threshold was again optimized using a grid search to 
maximize Dice similarity and to provide the most optimis-
tic estimate of pipeline performance, however this time the 
optimization was performed at the group-level (yielding one 
threshold per pipeline).

Results

Test–Retest Reliability

Test–retest reliability measurements between paired, same-
day images of the same subject in HCP showed substantial 
differences across pipelines. For brevity, we present here 
the results for the 5 pipelines that included all regressor 
types (HMP, Physio, AROMA, and Freq) because a typi-
cal fMRI analysis requires the removal of each of these 
artifacts. Full results for all 18 pipelines can be found 
in the Supplement, Figures S2-S5. Measurements of FC 
demonstrated the highest intraclass correlation (ICC) with 
the fully sequential HMP → AROMA → Physio → Freq 
pipeline (Fig. 3a), which significantly outperformed the 
other 4 pipelines (paired t-test, p < 0.001). The other 
sequential pipeline AROMA → HMP → Physio → Freq 
ranked second, followed by the 3 concatenated pipe-
lines. Notably, the fully concatenated [HMP, AROMA, 
Physio, Freq] pipeline showed worse FC ICC than the 
baseline images before any artifact correction. For ReHo 

corr(Qs, mFDs)

and fALFF, the sequential pipelines also yielded sig-
nificantly better ICC (p < 0.001) than the concatenated 
pipelines (Fig.  3b,c). Next, the GICA-based, subject-
specific DMN spatial maps demonstrated the best TRT 
(Dice similarity coefficient between paired images of 
the same subject) after processing with the PCR[HMP, 
AROMA, Physio, Freq] pipeline, followed by the sequen-
tial HMP → AROMA → Physio → Freq pipeline (Fig. 3d). 
Comparisons of group-level DMN spatial maps in Fig. 4 
showed similar TRT (Dice similarity between the low 
motion and high motion maps) across the pipelines, with 
the [HMP, AROMA, Physio] → Freq pipeline ranking 
first. Dice similarity between these DMN maps and the 
Thomason et al., 2011 DMN template was also compa-
rable across pipelines (Figure S6). However, qualitative 
differences appeared (Fig. 4), such as the [HMP, AROMA, 
Physio] → Freq and [HMP, AROMA, Physio, Freq] pipe-
lines failing to recover a significant prefrontal region of 
the DMN in either the low or high motion images. On 
the other hand, the SBC-based DMN spatial map showed 
the best TRT with the HMP → AROMA → Physio → Freq 
pipeline, with the sequential pipelines outperforming the 
concatenated pipelines (Fig. 3e). SBC-based DMN TRT 
with the fully concatenated [HMP, AROMA, Physio, Freq] 
pipeline was worse than in the baseline images. Exam-
ple DMN spatial maps for a representative subject are 
compared qualitatively in supplemental Figure S7. The 
baseline images produce noisy DMN maps that fail to 
recover the characteristic regions of the DMN, including 
the medial prefrontal cortex, posterior cingulate cortex, 
posterior parietal lobule, and hippocampus (Beckmann 
et al., 2005; Franco et al., 2009; Greicius et al., 2003). 
Meanwhile, these regions are recovered in the DMN map 
from the HMP → AROMA → Physio → Freq pipeline. The 
[HMP, AROMA, Physio] → Freq pipeline also recovered 
these regions, though its DMN map contains more noise. 
The [HMP, AROMA, Physio, Freq] pipeline, which had 
the worst TRT, contained the most noise.

In summary, we found that the fully sequential pipe-
lines, i.e. HMP → AROMA → Physio → Freq and 
AROMA → HMP → Physio → Freq, ranked first or second 
in all 5 resting-state, within-subject TRT measures. The fully 
concatenated [HMP, AROMA, Physio, Freq] pipeline, how-
ever, performed the poorest in all 5 measures.

Default Mode Network Recovery in Diseased Subject 
Datasets

Using the ABIDE, EMBARC, and PPMI datasets, we 
further compared the pipelines in their ability to recover 
the DMN in the presence of neurological and psychiatric 
disorders. As above, we present the subset of results from 
the pipelines containing all 4 types of nuisance regressors. 
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Fig. 4  Graphical comparison of pipeline test–retest reliability of 
group-level default mode network (DMN) maps computed with group 
ICA (GICA) in the HCP dataset. GICA was performed separately 
on the 50 low motion images and 50 high motion images selected 
from the HCP dataset, and the independent component correspond-
ing to the DMN was chosen using the described template-matching 
grid search. Dice similarity coefficient between the low motion and 
high motion session DMN spatial maps was computed as a measure 

of test–retest reliability for each pipeline. Shown here are the over-
laid maps, with Low Motion map in red, High Motion map in blue, 
and overlapping areas in purple. Pipelines containing all 4 sets of 
regressors are shown in decreasing order of Dice similarity coeffi-
cient. Results from the baseline (no motion correction) pipeline are 
displayed on the bottom to illustrate the noisy GICA result before 
motion correction
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Full results for all 18 pipelines tested can be found in Fig-
ures S8–S13. After computing a group-level DMN map 
using GICA, 4 of the 5 compared pipelines showed com-
parable Dice similarity with the DMN template, with the 
AROMA → HMP → Physio → Freq pipeline ranking first 
(Fig. 5a). The finding was similar for the SBC-based DMN 
maps, with 4 of the 5 pipelines scoring similarly and the 
PCR[HMP, AROMA, Physio, Freq] pipeline ranking first 
(Fig. 5b). In both the GICA and SBC analyses, the fully con-
catenated pipeline [HMP, AROMA, Physio, Freq] exhibited 
the worst performance, with lower Dice similarity with the 
template compared to even the baseline.

A qualitative comparison of GICA DMN maps across 
pipelines is shown in Fig. 6, for KKI site of the ABIDE 
dataset. Findings were similar across the rest of the 
ABIDE, EMBARC, and PPMI datasets. Of note, the base-
line images failed to recover the hippocampal region of 
the DMN. The PCR[HMP, AROMA, Physio, Freq] pipe-
line did recover the hippocampus but missed the parietal 
lobe regions. The HMP → AROMA → Physio → Freq, 
AROMA → HMP → Physio → Freq, and [HMP, AROMA, 
Physio] → Freq pipelines were each capable of recovering 
the key DMN regions to varying degrees. Consistent with 
the quantitative observation in Fig. 5, the [HMP, AROMA, 
Physio, Freq] pipeline failed to recover any meaningful 
structures of the DMN (Fig. 6).

Functional Connectivity Metrics in Diseased Subject 
Datasets

As a primary purpose for FC measures is the diagnosis 
and prognosis of neurologic disease, we did an additional 

exploratory analysis of FC-based motion correction metrics 
in the diseased subject datasets specifically. The FC met-
rics evaluated in the ABIDE, EMBARC, and PPMI datasets 
appeared to support a different ranking of pipelines. This 
was the case for the 5 pipelines containing all 4 types of 
nuisance regressors (Fig. 7), and for the results for all 18 
pipelines tested which are shown in Figures S10–S13. All 
pipelines were able to improve QC-FC correlation and QC-
FC-dd from baseline, indicating removal of motion confound 
and distance-dependent artifact from FC matrices. All pipe-
lines were also able to improve modularity quality ( Q ), indi-
cating better graph partitioning of the FC matrices. For the 
modularity quality-motion correlation metric, all pipelines 
except [HMP, AROMA, Physio, Freq] were able to achieve 
improvements over baseline. Further, for QC-FC and modu-
larity quality, the [HMP, AROMA, Physio, Freq] pipeline 
ranked first among the pipelines, despite having performed 
poorly in the DMN recovery metrics. These apparent con-
tradictions led us to more closely test the validity of several 
widely used quality metrics.

Closer Examination of the QC‑FC Correlation Metric

We investigated the discrepancy between the DMN metrics 
and the FC metrics, specifically the QC-FC correlation. Fig-
ure 8 compares how the GICA DMN Dice similarity and 
QC-FC correlation associate with different measures of 
DMN connectivity. The ground truth for DMN Dice simi-
larity was the RSN labels of the Gordon-333 atlas. Overall 
DMN connectivity strength, computed from all FC matri-
ces as the mean intra-DMN functional connectivity, was 
positively correlated with GICA DMN Dice similarity and 

Fig. 5  Default mode network (DMN) recovery by each pipeline in 
datasets containing neurological and psychiatric disorders. a) GICA 
and b) SBC were used to create group-level DMN maps for 3 neu-
ropsychiatric disorder datasets: ABIDE (Autism Spectrum Disorder), 
EMBARC (Major Depressive Disorder), and PPMI (Parkinson’s Dis-

ease). Dice similarity was computed between these DMN maps and a 
standard template. Higher Dice similarity indicates better recovery of 
the canonical DMN. Pipelines are sorted in descending order of the 
average Dice similarity across the 3 datasets weighted by number of 
subjects (“All” score in gray)
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negatively correlated with QC-FC correlation across the 18 
pipelines. Likewise, overall DMN homogeneity, computed 
as the negative mean of per-subject intra-DMN connectivity 

standard deviations, was also positively correlated with 
GICA DMN Dice similarity and negatively correlated with 
QC-FC correlation. Evidently, higher (better) QC-FC was 

Fig. 6  Graphical comparison of the pipelines’ test–retest reliability of 
group-level default mode network (DMN) maps computed with group 
ICA (GICA) in the dataset of subjects with Autism Spectrum Disor-
der. GICA using GIFT was computed on the 151 subjects (8–17 years 
old) from the ABIDE2KKI dataset, and the IC corresponding to the 
DMN was chosen using the described template-matching optimi-
zation method. Shown here are the template DMN in red and GIFT 
extracted DMN in blue, with overlapping areas in purple. Pipelines 

with all 4 sets of regressors are shown in decreasing order of dice. 
Baseline pipeline is displayed on the bottom, indicating that GIFT 
is unable to recover the hippocampal areas without motion correc-
tion. Notably, GIFT is not able to recover a meaningful DMN with 
the [HMP, AROMA, Physio, Freq] pipeline, which was also the case 
for all datasets except ABIDE2GU, indicating that the pipeline may 
remove DMN signal in many cases



 Neuroinformatics

1 3

associated with lower (poorer) DMN connectivity and 
homogeneity.

Closer Examination of the Modularity Quality Metric

While the Louvain algorithm automatically finds the FC 
network communities that optimize modularity quality, we 
sought to identify what networks were actually found and 
how they related to the canonical RSNs. We hypothesized 
that the communities which optimize modularity quality 
may not necessarily be biologically relevant or related to 
the canonical RSNs. They may instead be affected by motion 
artifact, as suggested by the [HMP, AROMA, Physio, Freq] 
pipeline having worse modularity quality-motion correla-
tions than baseline. Figure 9a compares the mean number of 
communities found by the Louvain algorithm in the images 
processed with each pipeline. The [HMP, AROMA, Physio, 
Freq] pipeline (highlighted in the purple box, Fig. 9a), which 
had the highest modularity quality Q in Fig. 7c, also had 

the fewest number of communities. The Louvain algorithm 
found a mean of only 2.8 communities for this pipeline, 
while over 3 communities were found from every other pipe-
line. The [HMP, AROMA, Physio, Freq] pipeline also mani-
fests as an outlier when the Dice similarity was computed 
between the canonical DMN and the most similar commu-
nity from the Louvain result of each image (Fig. 9b,c). The 
communities identified in the [HMP, AROMA, Physio, Freq] 
pipeline had the lowest Dice similarity with the DMN, indi-
cating that data from this pipeline was not able to recover 
and distinguish well the primary RSN.

Discussion

Pipeline Recommendations

Ciric et al. suggest that the optimal motion correction strat-
egy will differ by metric, and that largely holds true with 

Fig. 7  Additional quality metrics compared across pipelines for the 3 
neuropsychiatric diseased subject datasets: ABIDE (Autism Spectrum 
Disorder), EMBARC (Major Depressive Disorder), and PPMI (Par-
kinson’s Disease). The pipelines are sorted from best (top) to worst 
(bottom) by the “All” score (in gray), which is the average across 
the 3 datasets weighted by number of subjects. Metrics computed 
included a) QC-FC correlation, b) QC-FC distance dependence, c) 

modularity quality, and d) modularity quality-motion correlation. 
See the text for a discussion on the validity of these metrics. For a) 
QC-FC correlation which is a distribution over FC edges and c) mod-
ularity quality which is a distribution over subjects, 95% confidence 
intervals are included as error bars. Significant differences in “All” 
score for each pipeline vs. baseline are indicated with asterisks: *** 
p < 0.001
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these results (Ciric et al., 2017). However, by prioritizing 
metrics that appear more reliable, we can begin to make 
some general recommendations. With reproducibility being 
a key desideratum in fMRI research, we first consider the 
HCP test–retest reliability (TRT) results. Based on TRT met-
rics for comparing the same subject’s FC, ReHo, fALFF, and 
individual DMN spatial maps under conditions of high and 
low motion, HMP → AROMA → Physio → Freq performed 
the best overall. In the GICA-based, group-level DMN maps, 
this fully sequential pipeline also recovers reproducible 
DMN maps between low- and high-motion images. Also, 
in the diseased subject datasets, this sequential pipeline 
showed reasonable performance in recovering the DMN via 
GICA and SBC, ranking neither best nor worst. Overall, the 
HMP → AROMA → Physio → Freq shows the most promise 
for improving TRT of connectivity and RSN analyses in 
images affected by motion in varying degrees, and it is a rec-
ommended choice for removing motion artifacts in images 
of subjects with neurological and psychiatric disorders.

Adopting the geometrical perspective on nuisance regres-
sion suggested by Lindquist et al., 2019 may shed light on 
why the HMP → AROMA → Physio → Freq worked so 

well across several metrics and datasets. It may be that the 
reintroduction of artifact removed in previous steps of the 
sequential regression is outweighed by the efficacy of rela-
tively small design matrices to fit the noise components in 
the data at each step. It could also be that previous regression 
steps remove some actual neuronal signal that is reintro-
duced in later steps. Thus, although theoretically superior, 
concatenated regression may in many cases be inferior to 
sequential regression in practice. These speculations suggest 
a promising line of inquiry that future experiments could 
address.

Concatenated Regression

Lindquist et al. postulated that a single nuisance regression 
step, with all regressors concatenated in the same design 
matrix, would outperform sequential regression steps by 
avoiding reintroduction of artifacts (Lindquist et al., 2019). 
However, our results showed that the fully concatenated 
[HMP, AROMA, Physio, Freq] pipeline performed the poor-
est across the TRT metrics and DMN metrics, often showing 
even worse metrics than the uncorrected baseline images. 

Fig. 8  Investigation into the discrepancy between promising QC-FC 
yet poor RSN recovery for the fully concatenated [HMP, AROMA, 
Physio, Freq] pipeline. To probe the validity of the QC-FC metric, 
Pearson's correlation was computed between measures of DMN qual-
ity and the QC-FC metric across the 18 pipelines. Shown here is the 
distribution of the resulting correlations for all diseased subject data-
sets. A Positive correlation would indicate that higher DMN quality 
improves pipeline QC-FC, and vice versa. Correlations of DMN qual-
ity with GIFT (GICA) DMN recovery are also included for compari-
son. DMN Strength is measured by taking the mean of the FC val-

ues across all DMN edges (connections) within a subject, and then 
the grand mean across all subjects for a pipeline. DMN Homogene-
ity is measured by taking the negative standard-deviation of the FC 
values across all DMN edges within a subject, and then the mean of 
standard-deviations across all subjects for a pipeline. QC-FC values 
were negated to indicate improvement with increasing values. Results 
show that increases in DMN quality improves GICA Dice similar-
ity scores while worsening QC-FC, indicating that QC-FC scores 
improve with the removal of DMN signal and bringing the metric's 
validity into question
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Qualitative comparisons of DMN spatial maps indicated an 
apparent loss of RSN signal and the presence of remaining 
noise. These problems likely stem from fitting a GLM on 
a large design matrix containing 100 s of regressors. HMP 
provides 24 regressors (after expansion with squares and 
derivatives), AROMA may create as many as 50 regressors 
(depending on the number of ICA components automatically 

selected by the AROMA algorithm), Physio contributes 8 
regressors (with squares and derivatives), and Freq may 
contain as many as 135 regressors (depending on the num-
ber of sinusoids needed for the specified bandpass, which 
is determined by the granularity of frequencies needed to 
approximate the bandpass and by the number of volumes). 
The high dimensionality of the concatenated design matrix 

Fig. 9  Investigation into the discrepancy between promising modu-
larity yet poor RSN recovery for the fully concatenated [HMP, 
AROMA, Physio, Freq] pipeline. For this analysis, the number of 
communities computed by the Louvain algorithm for all 818 subjects 
in the ABIDE, EMBARC, and PPMI datasets was examined (a). We 
found this pipeline had the lowest number of communities, indicat-
ing less separability of the FC into distinct networks compared to 
other pipelines. DMN signal recovered by the Louvain algorithm was 
also examined using a similar template-matching approach as used 
in GICA, using the DMN template from the Gordon333 atlas. Dice 
score between the best matching Louvain community and the atlas 

for all subjects are shown in (b), where notably the [HMP, AROMA, 
Physio, Freq] achieves the lowest dice, indicating that the Louvain 
algorithm is unable to recover a DMN. A representative subject from 
the EMBARC dataset is shown in (c) to compare the Louvain parti-
tions on different pipeline outputs with the Gordon333 atlas. DMN 
regions in the Gordon333 atlas are colored in red. For each pipeline, 
the Louvain partition most similar to the DMN is colored in blue. A 
comparatively high modularity Q for [HMP, AROMA, Physio, Freq] 
suggests that the modularity metric can give spurious high values on 
outputs that remove putative reliable true networks such as the DMN
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leads to two obstacles: 1) a great loss of degrees of freedom 
in the cleaned data and 2) an ill-posed GLM. The image 
timeseries analyzed in this work contained from 128 to 300 
volumes, meaning that in the worst case, there would be 
more regressors than observations when fitting the GLM. 
Indeed, poor GLM fitting on the concatenated design matrix 
is shown by computing the partial coefficient of determina-
tion for each regressor type using the method described by 
(Bianciardi et al., 2009) (Figure S14). We conclude that the 
theoretical benefits of single-step concatenated regression, 
as proposed by Lindquist et al., do not appear to outweigh 
the practical obstacles of performing such a regression, at 
least at the current clinical TR of 1–2 s.

However, we still find evidence that future work aimed 
at optimizing such a single-step, concatenated regression 
may eventually prove fruitful. For example, applying PCR 
to reduce the dimensionality of the concatenated design 
matrix before performing the regression was substantially 
more effective than using the full design matrix. The PCR 
approach substantially improved performance in the FC and 
DMN TRT metrics on the HCP dataset and the SBC DMN 
Dice similarity on the diseased subject datasets. Increas-
ing the degree of dimensionality reduction improved per-
formance further, though not to the extent of the sequential 
pipelines (Figure S15). Another alternative is the [HMP, 
AROMA, Physio] → Freq pipeline, with Freq regression 
performed separately since it contains the most regres-
sors. This approach performed nearly as well as the leading 
HMP → AROMA → Physio → Freq pipeline in the DMN 
Dice similarity metrics on the diseased subject datasets.

Validity of Motion Correction Metrics

Interestingly, despite performing poorly in TRT and DMN 
metrics, the fully concatenated pipeline showed the best 
QC-FC correlation and modularity quality. However, fur-
ther analysis demonstrated serious shortcomings of the 
QC-FC correlation and modularity quality metrics. Lower 
(better) QC-FC correlation was associated with lower DMN 
FC strength, indicating that QC-FC correlation is biased 
towards pipelines that suppressed RSN activity. Similarly, 
lower QC-FC correlation was associated with lower DMN 
homogeneity, i.e. higher variance in DMN FC. This suggests 
a case of regression attenuation, where higher variance in 
the data biases Pearson’s correlation towards zero (Saccenti 
et al., 2020; Thouless, 1939). In other words, a pipeline could 
hypothetically achieve a good QC-FC correlation by simply 
reducing FC to high-variance noise. Further evidence of this 
signal loss is seen when measuring the temporal signal-to-
noise ratios of these pipelines (Figure S16). Since the QC-
FC-dd metric is derived from the QC-FC metric, its reliabil-
ity as an index of motion artifact removal is doubtful as well. 
Therefore, prioritizing QC-FC and QC-FC-dd correlations as 

motion correction metrics may inadvertently lead to remov-
ing true biological signals from the data, and we do not rec-
ommend using QC-FC and QC-FC-dd correlations in their 
current form.

The modularity quality metric, Q , also raised concerns. 
Ciric et al. showed that modularity quality can be negatively 
correlated with subject motion; for some motion correction 
approaches, this correlation was as large as r = −0.494 
(Ciric et al., 2017). This is undesirable, because ideally a 
subject’s network modularity should be decoupled from 
and unassociated with their motion level. An additional 
concern comes from the use of the Louvain algorithm to 
compute modularity quality. This algorithm performs a 
greedy optimization to identify graph communities that 
maximize modularity quality, but there is no guarantee that 
these communities are meaningful or related to actual RSNs. 
Our results showed that the [HMP, AROMA, Physio, Freq] 
pipeline with the best modularity quality also had correlation 
between modularity quality and motion that was worse than 
baseline and significantly fewer communities than the other 
pipelines. The Louvain-partitioned communities did not 
appear to reflect any known RSNs, such as the highly repro-
ducible DMN. Also, there is no clear neurophysiological 
basis for the optimal value of modularity quality. The “true” 
modularity of the human brain is unknown, meaning that a 
higher modularity is not clearly better. When developing 
motion correction methods, we recommend that research-
ers prioritize metrics that have a strong neurophysiological 
basis, such as the identifiability of canonical RSNs, over 
blind partitioning methods like the Louvain algorithm.

Most importantly, we advocate that motion correction 
methods be evaluated with a variety of metrics and on sev-
eral datasets. While many previous studies have focused on 
metrics based on FC (Ciric et al., 2017; Parkes et al., 2018; 
Power et al., 2015), FC is only a single method of rs-fMRI 
analysis. To fully understand the efficacy of a given motion 
correction method, one should also consider RSN-based 
measures (e.g. GICA, SBC, spatial map integrity), local con-
nectivity (e.g. ReHo, fALFF), and test-retest reliability in the 
context of diseased as well as healthy individuals.

Limitations

This work is not intended to be an exhaustive comparison 
of motion correction approaches. We considered only a 
subset of the many nuisance regressor types proposed by 
the community and a selection of the possible regressor 
sequence permutations as our main goal was the compari-
son of concatenated with sequential regression approaches. 
In future work, comparisons of additional nuisance regres-
sor generation methods such as ANATICOR or ICA-FIX 
could be made (Jo et al., 2013; Salimi-Khorshidi et al., 
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2014). In the meantime, our analysis included some of 
the most common nuisance regressors used in the fMRI 
research community.

Further, we have not considered global signal regres-
sion (GSR). Though GSR has been suggested to reduce 
QC-FC correlation (Ciric et  al., 2017), there is much 
uncertainty among fMRI researchers about whether GSR 
may introduce artifactual anticorrelations or remove bio-
logical signal (Liu et al., 2017; Murphy et al., 2009). Also, 
we have shown that conclusions based on the QC-FC cor-
relation metric may be unreliable. Testing of GSR with 
additional metrics, such as TRT and DMN recovery, may 
be more informative.

Finally, we did not examine despiking or scrubbing 
(volume censoring) methods. These methods, which 
are much more aggressive than the HMP, AROMA, and 
Physio regression steps tested here, involve the trunca-
tion or removal of data from the fMRI timeseries. While 
despiking and scrubbing can be effective (Jo et al., 2013; 
Power et al., 2012; Satterthwaite et al., 2013), they may 
impede group-level analyses such as GICA unless the 
censored volumes are appropriately interpolated. Conse-
quently, we leave these comparisons for future work.

Conclusion

This work quantitatively compares motion correction strat-
egies consisting of extensive combinations of regressors 
in sequence or in concatenation and provides new insights 
and recommendations for motion correction. Through this 
analysis of multiple metrics across an array of healthy and 
diseased subject datasets, the work makes three primary 
contributions. First, critical limitations in multiple com-
monly used motion correction metrics, including modu-
larity quality, QC-FC, and QC-FC-dd correlations, are 
identified. It was demonstrated that these metrics are 
prone to promote motion correction approaches that do 
not recover RSN signals or that even remove true bio-
logical signals from fMRI. A set of metrics based on 
neurophysiological priors and reproducibility is recom-
mended as an alternative. Second, limitations in a fully 
concatenated regression approach are demonstrated and 
are recommended to be addressed in further development 
in high-dimensionality regression approaches. Third, the 
sequential HMP → AROMA → Physio → Freq pipeline is 
recommended as it is shown to be robust and to outperform  
other sequential and concatenation pipelines across mul-
tiple datasets. This work is intended to help other fMRI 
researchers in selecting appropriate motion correction 
strategies, evaluating such strategies more critically, and 
furthering the analysis of fMRI data that reflects true bio-
logical signal.
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