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Deep learning in data-limited situations

Neuroimaging (esp. fMRI) dataset sizes are frequently limited compared to commonly-used DL datasets.
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Study Unique subjects with fMRI 

ABIDE-I 1112
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ADNI2 551

PPMI 185

Dataset Images

ImageNet 14 million

SVHN 630,420

COCO 123,287

CIFAR-10 60,000

Natural image datasets fMRI datasets

0 20000 40000 60000 80000 100000 120000 140000

PPMI

ADNI2

ABIDE-II

ABIDE-I

CIFAR-10

MNIST

COCO

Images

Dataset sizes compared

Natural images

fMRI

http://www.utsouthwestern.edu/labs/montillo


3

Data augmentation in deep learning
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Recent methods for automated natural image augmentation achieve large performance benefits: 

• AutoAugment (Cubuk et al. CVPR 2019): up to 29% relative improvement on CIFAR-10

• Population-based augmentation (Ho et al. ICML 2019): up to 37% relative improvement on CIFAR-10

Data augmentation in natural image problems involves:

Geometric transformations
• Scaling

• 𝑰′ =
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

𝑰

• Rotation

• 𝑰′ =
cos(𝜃) −sin(𝜃) 0

sin 𝜃 cos(𝜃) 0
0 0 1

𝑰

Image (pixel intensity) transformations
• Saturation

• Contrast

• Gamma

• Blurring

• Cutout

Original Scaling Rotation Shearing Desaturation Cutout

• Translation

• 𝑰′ =
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

𝑰

• Shearing

• 𝑰′ =
1 𝑐𝑥 0
𝑐𝑦 1 0

0 0 1

𝑰

• etc.

Cubuk et al. AutoAugment: Learning Augmentation Policies from Data. CVPR 2019.
Ho et al. Population Based Augmentation: Efficient Learning of Augmentation Policy  Schedules. ICML 2019.
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Data augmentation for fMRI
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Augmentation techniques for natural images do not create anatomically realistic images.

Previous methods for structural MRI augmentation:

• Ulloa et al., 2015; Castro et al., 2015: ICA and random loading matrices, up to 8% relative improvement in 

Schizophrenia diagnosis

• Relatively less work on fMRI augmentation

Goals:

• Should be constrained to neuroanatomically realistic brain morphology and appearance

• Requires minimal user parameterization

• Should readily scale to large augmentation targets 

• Tangible benefit for deep learning models

Github.com/albumentations-team/albumentations

Ulloa et al. Synthetic structural magnetic resonance image generator improves deep learning prediction of schizophrenia, MLSP 2015. 
Castro et al. Generation of synthetic structural magnetic resonance images for deep learning pre-training, ISBI 2015.

http://www.utsouthwestern.edu/labs/montillo


5

Proposed method
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Brain extraction 
(FSL BET & AFNI 
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Brain extraction
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Brain extraction
(ROBEX)

Nonlinear registration*

𝑇𝑓𝑠(𝑰𝑓)

Nonlinear registration** 

𝑇𝑠𝑠(𝑰𝑠)

Final transformation

𝑇𝑠𝑠 𝑇𝑓𝑠 𝑰𝑓

Select target

*ANTS RegistrationSynQuick
**ANTS RegistrationSyn
Avants et al. A Reproducible Evaluation of ANTs Similarity Metric 
Performance in Brain Image Registration NeuroImage 2010. 
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Source fMRI Source sMRI

Target sMRI Augmented fMRI

http://www.utsouthwestern.edu/labs/montillo


www.utsouthwestern.edu/labs/montillo

Source fMRI Source sMRI

http://www.utsouthwestern.edu/labs/montillo


8

Selection of target images

Considerations:

• Age

• Cortex atrophies with age1,2

• Sex

• Gray matter volume distributes 

differently in male vs. female 

brains3,4

• Disease state
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1. Resnick et al. Longitudinal Magnetic Resonance Imaging Studies of Older Adults: A Shrinking Brain. J Neurosci, 2003.
2. Good et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 2001.
3. Lotze et al. Novel findings from 2,838 Adult Brains on Sex Differences in Gray Matter Brain Volume. Sci Reports, 2019.
4. Ritchie et al. Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants.  Cerebral Cortex 2018.
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Application: depression treatment outcome prediction

Major Depressive Disorder (MDD) is a leading cause of disability with 16% lifetime prevalence1.

• Individual antidepressant response is unpredictable, each drug has a ~40% response rate

• Treatment selection is largely based on trial-and-error
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Clinician selects a candidate 

antidepressant

Patient is treated for 

8-12 weeks 

Satisfactory clinical 

improvement?
Continue treatment

Yes

No

1. Kessler et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003
2. Trivedi et al., Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design. J. Psych. Res. 2016

EMBARC dataset2

• 163 subjects treated with sertraline for 8 weeks

• Structural and task-based fMRI acquired before treatment

• fMRI uses a number-guessing task that probes reward processing circuitry

Deep learning task: use pre-treatment fMRI to predict individual outcomes to sertraline 

treatment (change in Hamilton Rating Scale for Depression, HAMD)

http://www.utsouthwestern.edu/labs/montillo
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Data preparation

fMRI data was augmented 5-fold:

• For each source subject, 5 age- and gender-matched target subjects were selected from a separate 

treatment group (placebo) from the dataset

• 163 subjects → 978 subjects after augmentation

• Model takes ~600 input features

• Subjects:features ratio is improved 163:600 → 978:600

• Proposed method (nonlinear registration) was compared to a basic affine registration approach

• Augmented data used in training set only

fMRI preprocessing:

Feature extraction:

• 1st-level GLM fitted to task conditions → voxel-level contrast maps

• Parcellation with study-specific functional atlas → ~600 mean regional contrast values

www.utsouthwestern.edu/labs/montillo

Head motion 
correction

Brain extraction
Spatial normalization 

to MNI152 EPI 
template

Smoothing with 6 mm 
FWHM Gaussian kernel
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Contrast maps derived from augmented fMRI – example 1
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Contrast maps derived from augmented fMRI
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Contrast maps derived from augmented fMRI
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Effects of nonlinear transformations
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Nonlinear warp field
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Model training, optimization, and validation

Feed-forward fully-connected neural networks were trained to predict treatment 

outcome (ΔHAMD) from the regional contrast values

Model hyperparameters were optimized using random searches1 over 300 

hyperparameter configurations, with 3 x 5 nested K-fold cross-validation
• Number of layers

• Layer size

• Activation function

• Weight regularization, batch normalization, dropout rate

• Learning rate

• Atlas granularity (number of regions)

3 model searches conducted
• No augmentation (baseline)

• Proposed augmentation method 

• Basic affine augmentation

www.utsouthwestern.edu/labs/montillo

1. Bergstra and Bengio, Random Search for Hyper-parameter Optimization, JMLR 2012.

Outer fold 1 Outer fold 2 Outer fold 3

Inner fold 1 Inner fold 2 Inner fold 5…

2. Select best model based on 𝑅2, retrain 
on all data from inner folds

3. Evaluate best model in each outer fold, 
report mean performance over 3 models

1. Train and evaluate model in each inner 
fold

Final model performance

http://www.utsouthwestern.edu/labs/montillo
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Model search results
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The proposed augmentation increased model performance and outperformed the basic affine 

augmentation. 

Differences in performance were significant at 𝑝 < 0.001 after retraining each model 100 times 

with random reinitializations.

http://www.utsouthwestern.edu/labs/montillo
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Where is augmentation making a difference?
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Augmentation
Model search
(optimize model hyperparameters)

Outer fold 1 Outer fold 2 Outer fold 3

Inner fold 1 Inner fold 2 Inner fold 5
…

2. Select best model based on 𝑅2, retrain 
on all data from inner folds

3. Evaluate best model in each outer fold, 
report mean performance over 3 models

1. Train and evaluate model in each inner 
fold

Final model performance

Final model training 
(optimize model parameters) Augmentation
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Impact of augmentation on model training (parameter optimization) 

Ablative experiment:

The top 5 models from each outer fold in Aug

search (Aug1, Aug2,…,  Aug15) were retrained 

without augmented data. 

Performance decreased significantly: 

𝑅2 decreased by 0.058 ± 0.051 (𝑝 = 0.0006)

RMSE increased by 0.21 ± 0.18 (𝑝 = 0.0006)

Hyperparameter configurations selected 

with augmented searches perform worse 

without augmented training.

www.utsouthwestern.edu/labs/montillo
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Impact of augmentation on model search (hyperparameter optimization)

Additive experiment:

The top 5 models from each outer fold in Base

search (Base1, Base2,…,  Base15) were retrained 

with augmented data. 

Performance did not change significantly: 

𝑅2 increased by 0.015 ± 0.044 (𝑝 = 0.209)

RMSE decreased by 0.05 ± 0.16 (𝑝 = 0.214)

Hyperparameter configurations selected 

without augmented searches fail to improve 

with augmented training.

www.utsouthwestern.edu/labs/montillo

Outer fold 1 Outer fold 2 Outer fold 3

Base1

Base2

Base3

Base4

Base5

Base6

Base7

Base8

Base9

Base10

Base11

Base12

Base13

Base14

Base15

AugmentationModel search
(optimize model hyperparameters)

Outer fold 1 Outer fold 2 Outer fold 3

Inner fold 1 Inner fold 2 Inner fold 5…

Final model performance

Final model training (optimize 
model parameters)

Augmentation

http://www.utsouthwestern.edu/labs/montillo


21

Conclusions

We propose a parameter-free fMRI data augmentation method that demonstrates high performance benefit in a deep 

learning prognostic problem.

Augmenting the data 5x with the proposed method increased performance in antidepressant outcome prediction by a 

26% in 𝑅2 (relative).

• This is consistent with natural image augmentation methods, e.g. AutoAugment and PBA (22-37% performance 

boost).

Basic affine augmentation had no significant performance benefit, in comparison. 

The most benefit comes from using augmented data throughout both model search and final model training.

Model search (hyperparameter optimization) on limited data can result in less statistically powerful models that fail to 

increase performance on additional data in the future

Limitations:

• Nonlinear registrations are computationally intensive (~30 minutes per augmentation, but highly parallelizable)

• Experiments were limited to 5x augmentation, but we already see a benefit

• One application was shown (MDD and task-fMRI), but we anticipate extensibility to other MRI contrasts, datasets

www.utsouthwestern.edu/labs/montillo

Cubuk et al. AutoAugment: Learning Augmentation Policies from Data. CVPR 2019.
Ho et al. Population Based Augmentation: Efficient Learning of Augmentation Policy  Schedules. ICML 2019.
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Summary
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