
Anatomically-Informed Data Augmentation for Functional
MRI with Applications to Deep Learning

Kevin P. Nguyen, Cherise Chin Fatt, Alex Treacher, Cooper Mellema, Madhukar H. Trivedi,
and Albert Montillo

University of Texas Southwestern Medical Center, Dallas, TX, USA

Keywords: data augmentation, neuroimaging, fMRI, depression, deep learning

ABSTRACT

The application of deep learning to build accurate predictive models from functional neuroimaging data is often
hindered by limited dataset sizes. Though data augmentation can help mitigate such training obstacles, most
data augmentation methods have been developed for natural images as in computer vision tasks such as CIFAR,
not for medical images. This work helps to fills in this gap by proposing a method for generating new functional
Magnetic Resonance Images (fMRI) with realistic brain morphology. This method is tested on a challenging
task of predicting antidepressant treatment response from pre-treatment task-based fMRI and demonstrates a
26% improvement in performance in predicting response using augmented images. This improvement compares
favorably to state-of-the-art augmentation methods for natural images. Through an ablative test, augmentation
is also shown to substantively improve performance when applied before hyperparameter optimization. These
results suggest the optimal order of operations and support the role of data augmentation method for improving
predictive performance in tasks using fMRI.

1. INTRODUCTION

Neural networks have proved to be powerful modeling tools for many medical imaging problems, such as pre-
dicting neurological and psychiatric diagnoses and prognoses from brain MRI. However, the training of neural
networks for these problems is frequently hindered by small dataset sizes, making it challenging to produce
high-performing, generalizable models. Data augmentation, which synthesizes additional data samples from real
data, has improved performance in many non-medical deep learning problems such as natural image classifica-
tion. For example, recent methods such as AutoAugment1 and Population-Based Augmentation2 have improved
classification error rate on highly studied datasets such as CIFAR, SVHN, and MNIST by up to 1.5% (a 12%
relative improvement from previous state-of-the-art). On a reduced CIFAR dataset, the performance benefit of
these AutoAugment was as high as 7%, highlighting the importance of data augmentation in cases of limited
dataset size.

However, data augmentation techniques developed for natural images typically involve color and intensity
transformations and geometric operations such as shearing, which may not be suitable for brain images because
they introduce transformations that do not yield realistic brain appearance and morphology. In other words,
these operations can produce implausible brain images. For brain MRI, one method for augmenting structural
MRI (sMRI), involving independent components analysis (ICA) and random loading matrices, has shown to
improve the accuracy of schizophrenia vs. healthy control classification by 5% (7-8% relative improvement using
augmentation).3,4 No such method has been developed and validated for functional MRI (fMRI).

The contributions of this work are as follows. 1) A novel, coregistration-based fMRI data augmentation
method is proposed, which synthesizes new realistic raw fMRI images. 2) The performance benefit of this
augmentation is demonstrated on an antidepressant response prediction task, where the goal is to produce
a pre-treatment predictor of clinical response to a commonly used antidepressant, sertraline. Since individual
antidepressant response is highly variable, improving the accuracy of such a predictor would help reduce morbidity
in Major Depressive Disorder (MDD) by aiding clinicians in identifying MDD patients most likely to benefit
from sertraline. 3) Additionally, this work provides evidence that augmentation not only improves overall model
performance but also enables the identification of better models during model hyperparameter optimization.
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Figure 1. The proposed data augmentation method synthesizes a new fMRI image by performing a T1-based coregistration
to another subject’s brain in native space. a. The source fMRI mean frame is registered to the source sMRI. b. The
source sMRI is registered to an age- and gender-matched target sMRI. c. The combination of these transformations is
applied to transform the source fMRI into a synthetic fMRI in target space.

2. METHODS

2.1 Materials

Data from the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EM-
BARC) study,5 a randomized controlled clinical trial, was used for the following experiments. This dataset
contains 163 MDD subjects who underwent pre-treatment sMRI and task-based fMRI, then completed an 8-
week treatment course with the antidepressant sertraline. The predictive task is to estimate the change in
clinical severity between pre-treatment and week 8 of treatment from pre-treatment fMRI. This severity is mea-
sured by the Hamilton Rating Scale for Depression (HAMD) score. Demographics and pre-treatment clinical
measurements, including psychiatric scales, comorbidities, and disease duration, are also added to the predictive
models as covariates.

T1-weighted sMRI was acquired at 3T with the MPRAGE sequence; TE was 2.4 ms or 3.7 ms depending
on study site, with dimensions of 256 × 256 × 176, and an isotropic voxel size of 1 mm. BOLD fMRI was
acquired using GE-EPI, a TR of 200 ms, dimensions of 64 × 64 × 39, and voxel size of 3.2 × 3.2 × 3.1 mm for
8 minutes. During fMRI acquisition, subjects completed a block-design number-guessing task that stimulates
reward processing circuitry known to be altered in depressed individuals.6

2.2 Data Augmentation

To generate anatomically-constrained synthetic fMRI images from real data, the proposed method employed
a T1-based coregistration scheme to precisely resample a source subject’s original fMRI signal onto the brain
anatomy of a target subject in native space (Fig. 1). First, brain extraction was performed on the source
and target subjects’ sMRI using the ROBEX software. Brain extraction was then performed on the source
subject’s mean fMRI volume using a combination of FSL BET and AFNI 3dAutomask tools. In all cases,
brains were manually inspected to confirm high quality brain extraction. Next (1a), the source fMRI mean
volume was coregistered to the source sMRI using the antsRegistrationSyNQuick routine in ANTS, which
performs a sequence of multi-scale rigid, affine, and nonlinear registration steps. Then (1b), the source sMRI
was coregistered to the target sMRI using antsRegistrationSyN which accurately coregisters brain anatomy
in sMRI across different subjects. Finally (1c), the transformations from steps a) and b) were combined and
applied to the source fMRI to produce a new image with the source’s fMRI signal in the target ’s brain space.
This data augmentation effectively created geometric variation through both the nonlinear registration process
and intensity variation inherently through the voxel interpolation during the warping transformation.

2.3 fMRI Preprocessing

The following preprocessing pipeline was applied to all original and augmented fMRI data: images were head-
motion corrected through affine realignment of frames, brain-extracted as described in sect. 2.2 above, spatially
normalized to the MNI152 EPI template, and smoothed with a 6 mm Gaussian kernel. Note that in contrast to
the T1-based coregistration used during data augmentation, where the priority was to accurately warp a subject’s
brain into a different anatomy, a direct EPI-based registration was used for fMRI spatial normalization. Direct
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warping of individual fMRI images onto an EPI template has been shown to be more accurate for normalization
to a template than cross-modal normalization as it accounts for magnetic inhomogeneities particular to EPI
images.7,8 The preprocessed fMRI images were fitted to subject-level generalized linear models (GLMs) in
SPM12. The design matrix for the GLMs was defined as described in Greenberg et al.,6 with regressors for
each of the 3 conditions in the reward processing task. The fitted GLM coefficients for these regressors were
projected back into voxel space to yield 3 contrast maps, i.e. spatial maps of BOLD response to each task
condition. A study-specific brain parcellation was created from resting-state fMRI from all subjects in the
EMBARC dataset using the spectral clustering method developed by Craddock et al.9 This brain parcellation
was used to compute the mean regional contrast values from each of the 3 contrast maps. These mean regional
values are the input features for predictive model training, explained in the next section. The granularity of
this parcellation (number of regions-of-interest [ROIs]) was optimized during the model selection process, during
which 100-, 200-, and 400-ROI parcellations were tested.

2.4 Neural Network Construction, Model Search, and Validation

A feed-forward fully connected neural network was chosen as the predictive model. The model takes as input
mean ROI values from each contrast map plus demographic and clinical covariates, and it predicts the 8-week
change in the HAMD depression score. A loss function based on the coefficient of determination (R2) was used:

L(y, ŷ) = 100(1 − fR2(y, ŷ)) + λ

where y, ŷ are the true and predicted HAMD scores and fR2(.) computes the coefficient of determination for
the set of points given through its arguments. The coefficient of 100 was chosen empirically to keep the mag-
nitude of the loss roughly equal to that of the weight regularization term λ. Random search, a popular model
selection method, was performed to optimize model hyperparameters, such as number of layers, neurons per
layer, activation function, dropout rate, learning rate, and parcellation granularity. Three hundred (300) model
configurations were randomly chosen over a predetermined hyperparameter search space (Table 1). To obtain
an unbiased estimate of real-world performance, the models were evaluated using nested K-fold cross-validation
with 5 inner folds and 3 outer folds. Within each outer fold, model performance was ranked by mean R2 across
the held-out partitions of the inner folds. The model with the highest R2 was selected from each outer fold and
test R2 was measured on the held-out partition of the outer fold, not used for model training nor selection. The
final model performance was the mean test performance over the 3 outer folds.

Table 1. Hyperparameter ranges used during random search.

Hyperparameter Range searched

Model-level hyperparameters
Number of fully-connected layers 1, 2, 3
Size of first layer 64, 96, 128, ..., 512
Weight regularization L1, L2, L1 & L2
Nadam learning rate 0.0010, 0.0011, 0.0012, ..., 0.0030
Parcellation granularity (number of regions) 100, 200, 400

Layer-level hyperparameters
Layer size taper rate* 0.5, 0.75
Batch normalization Yes, No
Dropout rate 0.3, 0.4, 0.5, ..., 0.9
Activation ReLU, Leaky ReLU, ELU, PReLU

*Taper rate determined the size of subsequent layers after the first fully-connected layer. Layer i has ni = ti ∗ ni−1

neurons, where ti is the taper rate selected for that layer and ni−1 is the size of the previous layer.

Model searches were performed without data augmentation (which we denote as the search Base) and with
the proposed data augmentation method (search Aug). To ensure fair comparisons, the 300 searched models,
their initial weights, and the cross-validation splits were identical between the model searches. In search Aug,
augmentation was applied to the training partition of each fold to increase sample size by a factor of 5. Specifically,
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each source subject in the training partition was augmented to 5 target subjects of the same gender and age decile.
Target subjects were selected from other treatment groups without subject overlap in the EMBARC dataset to
ensure that no target subjects came from the held-out partition. Demographics and clinical measurements
were copied over to the 5 new synthetic samples without augmentation, so that the augmentation would only
be synthesizing new fMRI data of a different but realistic brain shape, while assuming the remainder of the
synthesized subject was constant.

2.5 Comparison with Affine Augmentation

A basic augmentation using affine co-registration was also performed for comparison. Specifically, the FLIRT
tool from FSL was used to compute the register the source fMRI to the target sMRI.10,11 As with the pro-
posed, nonlinear augmentation method, each source subject was augmented to 5 gender- and age-matched target
subjects. A third, identical model search (search Aff ) was performed on this augmented data.

3. RESULTS

3.1 Data Augmentation

Synthesized contrast maps are compared to the original source fMRI in Fig. 2. While all three contrast maps
have similar high and low intensity areas globally across the brain, locally the shape and location of the individual
clusters do vary (yellow circled) which confirms that the augmentation procedure generated data samples with
distinct spatial variations, yet with fidelity to the original contrast map.

Figure 2. Example fMRI GLM contrast maps derived from a source fMRI image and two augmented fMRI images
synthesized from the source. A region with similar distributions of high and low intensity areas but distinct local variations
is circled in yellow. Contrast map values were thresholded at 0.25 for clarity.

3.2 Model Search Results

The top model from the non-augmented model search Base, referred to here as Base1, achieved R2 of 11.2%
and RMSE of 6.57 in predicting HAMD change (Table 2). The top model from search Aug with the proposed
augmentation, here called Aug1, attained R2 of 14.1% and RMSE of 6.46. This constitutes a substantial 26%
relative increase in R2 over Base1. In comparison, the affine augmentation yielded a top model, Aff1, with
R2 of 0.114 and RMSE of 6.531, a 2% relative increase in R2 from Base1. To ascertain the significance of this
finding, these top models were retrained 100 times each with random weight initializations and R2 and RMSE
were compared with a two-tailed t-test. The differences in R2 and RMSE between Aug1 and Base1 and between
Aff1 and Base1 were both significant with p = 0.001. Comparisons of these performance gains to those in the
literature are described in the discussion section below.

Table 2. Top model performance for each augmentation method.

Augmentation method RMSE R2

Baseline (no augmentation) 6.57 0.112
Proposed (nonlinear) 6.46 0.141
Affine 6.53 0.114

Proc. of SPIE Vol. 11313  113130T-4



3.3 Ablative Experiment: effect of data augmentation on model training

To test the impact of data augmentation in model training, Aug1 was retrained without augmented data to
create Aug′1. Without the augmented data, performance decreased from R2 of 14.1% and RMSE of 6.46 to
R2 of 10.7% and RMSE of 6.99. As a further test, the top 5 models from each of the 3 outer folds of search
Aug (Aug1, Aug2, ..., Aug15) were retrained without augmented data creating Aug′1, Aug

′
2, ..., Aug

′
15. A pairwise

two-tailed t-test between Augi and Aug′i demonstrated a significant decrease in performance when augmented
data was removed : R2 decreased by 5.8 ± 5.1% (p = 0.0006) and RMSE increased by 0.21 ± 0.18 (p = 0.0006).

3.4 Additive Experiment: effect of data augmentation on model selection

In a reciprocal test of the impact of data augmentation in model selection, Base1 was retrained with aug-
mented data. This new model, Base′1 did not exhibit increased performance with R2 of 11.2% and RMSE
of 6.74. This comparison was extended to the top 5 models from each of the 3 outer folds of search Base
(Base1, Base2, ..., Base15), which were retrained with augmented data creating Base′1, Base

′
2, ..., Base

′
15. A

pairwise two-tailed t-test between Basei and Base′i revealed a non-significant improvement: R2 increased by
1.5 ± 4.4% (p = 0.209) and RMSE decreased by 0.05 ± 0.16 (p = 0.214).

4. DISCUSSION AND CONCLUSION

This work introduces a data augmentation method for synthesizing fMRI images with realistic brain morphology
and demonstrates its performance benefit in a predictive task. The overall best performance in predicting
antidepressant response was achieved by performing augmentation before model search. The best model using
this approach, Aug1, outperformed the best model from a search conducted without augmentation, Base1, by 26%
in R2. Additionally, using affine transformations to augment the data did not substantially improve performance,
indicating that the nonlinear co-registration performed in the proposed method is integral to its effectiveness.
The rudimentary geometric variations and minimal voxel intensity noise generated by affine transformations
were likely canceled out once the augmented fMRI images were all spatially normalized to a common template.
However, the more geometrically complex transformations and voxel interpolation effects introduced by the
proposed nonlinear augmentation method were not fully canceled out during spatial normalization. The resulting
preprocessed fMRI data shows distinct variations in the derived contrast maps (Fig. 2).

The effectiveness of this augmentation method compares favorably with the 12% relative improvement
achieved by state-of-the-art augmentation methods for natural images1,2 and the 7-8% relative improvement
achieved by a previous sMRI augmentation method.3,4 Additionally, this method was shown to provide the
most benefit when used not only for model training, but also throughout the model search process. In the
ablative experiment, models selected from search Aug performed significantly worse when retrained without
augmented data. In fact, the previous best model Aug′1 performed worse than Base1, suggesting that the high-
performing models found in search Aug would have been missed by search Base. These observations strongly
indicate that data augmentation should be performed prior to model hyperparameter optimization. Conversely,
the additive experiment showed a lesser performance benefit when augmented data was introduced after the
model search. This suggests that search Base identified less statistically powerful models that could not increase
performance when data was augmented after the search.

While these results were limited to one task-based fMRI dataset, additional work will demonstrate gener-
alization to additional datasets and resting-state fMRI. Another possible limitation arose from the T1-based
coregistration employed in the augmentation. The source fMRI-to-source sMRI cross-modal registration may be
imprecise due to EPI-specific non-linearities, causing the source fMRI to not be exactly registered to the target
brain. Future work may test a direct EPI-based coregistration to the target fMRI. Finally, future experiments
will test more extensive augmentation such as to 10-20x the original dataset size rather than 5x. Despite these
limitations, the current findings show that the proposed fMRI augmentation can already significantly improve
deep learning performance on neuroimaging predictive tasks.

In conclusion, this work proposes a novel, coregistration-based fMRI data augmentation method to synthesize
realistic fMRI images that requires no new expensive fMRI acquisition. The method demonstrates improved per-
formance in a challenging prediction task of antidepressant response prediction. This work also provides evidence
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that augmentation should precede hyperparameter optimization and that augmentation not only improves over-
all model performance but also the identification of better models during model hyperparameter optimization.
We look forward to extending this promising approach to further increase its benefits.
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