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ABSTRACT 

Background: The lack of biomarkers to inform antidepressant selection is a key challenge in 

personalized depression treatment. This work identifies candidate biomarkers by building deep 

learning predictors of individual treatment outcomes using reward processing measures from 

functional MRI, clinical assessments, and demographics.  

Methods: Participants in the Establishing Moderators and Biosignatures of Antidepressant 

Response in Clinical Care (EMBARC) study (n = 222) underwent reward processing task-based 

functional MRI at baseline and were randomized to 8 weeks of sertraline (n = 106) or placebo (n 

= 116). Subsequently, sertraline non-responders (n = 37) switched to 8 weeks of bupropion. The 

change in Hamilton Rating Scale for Depression (HAMD) was measured after treatment. 

Reward processing, clinical measurements, and demographics were used to train treatment-

specific deep learning models. 

Results: The predictive model for sertraline achieved R2 of 48% (95% CI 33-61%, p < 10-3) in 

predicting HAMD and number-needed-to-treat (NNT) of 4.86 participants in predicting 

response.  The placebo model achieved R2 of 28% (95% CI 15-42%, p < 10-3) and NNT of 2.95 

in predicting response. The bupropion model achieved R2 of 34% (95% CI 10-59%, p < 10-3) 

and NNT of 1.68 in predicting response. Brain regions where reward processing activity was 

predictive included the prefrontal cortex and cerebellar crus 1 for sertraline and the cingulate 

cortex, caudate, orbitofrontal cortex, and crus 1 for bupropion. 

Conclusions: These findings demonstrate the utility of reward processing measurements and 

deep learning to predict antidepressant outcomes and to form multimodal treatment biomarkers. 

Clinical trial registration: NCT01407094 

  

https://clinicaltrials.gov/ct2/show/NCT01407094
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INTRODUCTION 

The discovery of biomarkers of antidepressant response is crucial to achieving 

personalized treatment planning in Major Depressive Disorder (MDD). Currently, remission 

rates for individual antidepressants are typically below 40%(1), and about 33% of patients 

require > 3-4 drug trials before achieving remission(2). However, biomarkers and predictive 

tools that optimize antidepressant selection for each patient would reduce the need for multiple 

drug trials, expedite remission, and enable a precision medicine approach to MDD treatment. 

 Noninvasive measurements of individual brain activity show promise as pre-treatment 

markers of treatment outcome. For example, default mode network and hippocampal 

connectivity in resting-state fMRI has been correlated with sertraline treatment outcome(3). 

Greater anterior cingulate cortex activation during emotional regulation has been associated 

with improved response to venlafaxine and fluoxetine(4; 5). Similarly, amygdala activation in 

response to emotional stimuli has been connected to non-specific treatment outcome(6). 

Compared to the serotonergic emotion regulation circuit, the dopaminergic reward processing 

circuity has been less studied for treatment outcome prediction, though one recent study has 

connected abnormal ventral striatum activity to better response to sertraline vs. placebo(7).  

 While previous research highlights the potential of neuroimaging to predict treatment 

response, models with greater statistical complexity are necessary to exploit the richness of 

fMRI data. This study employs deep learning models which may be more apt to discover the 

complex, nonlinear association between fMRI measurements and treatment outcome. Deep 

learning models can also scale to large numbers of multimodal input features, while 

automatically learning the most informative ones (8; 9). This capacity is exploited to integrate 

pre-treatment imaging and clinical measurements. Our previous work applied deep learning to 

predict bupropion outcome (10). The current analysis extends the previous work by developing 

predictors for three treatments and incorporating data augmentation, which mitigates overfitting 

and improves prediction accuracy. 
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 This secondary analysis of the Establishing Moderators and Biosignatures of 

Antidepressant Response in Clinical Care (EMBARC) study determines whether pre-treatment 

reward task-based fMRI can be used to predict treatment-specific outcome. Models are 

constructed for the sertraline and placebo main treatment groups, as well as the secondary 

bupropion treatment group. Predictive performance is presented and preliminary composite 

candidate biomarkers, combining neuroimaging and clinical phenotype features, are identified 

for each treatment.  

METHODS AND MATERIALS 

Participants 

 Details of the EMBARC study design have been previously reported(11). A total of 296 

participants with MDD were enrolled with written informed consent and IRB approval across 4 

study sites: Columbia University, Massachusetts General Hospital, University of Texas 

Southwestern Medical Center, and University of Michigan. Inclusion criteria included early onset 

(before age 30) and chronic (episode duration > 2 years) or recurrent (2+ episodes) disease. 

Demographics are described in Table 1. Further details on inclusion/exclusion criteria 

(Appendix I.1) and a CONSORT flow diagram (Fig. S1) are in the Supplement. 

Treatment Protocol and Outcomes 

The treatment period included two 8-week stages. In Stage 1, participants were 

randomized under double-blind conditions into sertraline or placebo treatment arms. 

Randomization was stratified by study site, baseline depression severity, and disease duration. 

At week 8, sertraline-treated participants not meeting response criteria (Clinical Global 

Improvement score less than “much improved”) were crossed over under double-blinded 

conditions to bupropion treatment in Stage 2. The analyzed samples included participants who 

received sertraline or placebo in Stage 1 and those from the sertraline arm who received 

bupropion in Stage 2. Clinical severity was tracked using the 17-item Hamilton Rating Scale for 
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Depression (HAMD), and the primary outcome is the change in HAMD (ΔHAMD) over the 8-

week treatment stage (week 8 minus baseline for sertraline and placebo, week 16 minus week 8 

for bupropion). Secondary binary outcomes were defined using standard clinical criteria, 

including response (decrease in HAMD ≥ 50% from pre-treatment) and remission (week 8 

HAMD ≤ 7). Dosage schedules are described in the Supplement, Appendix I.1; outcome and 

dosage characteristics for each treatment arm are presented in Table 1.  

MRI Acquisition 

Reward task-based fMRI was acquired at the baseline visit for 8 minutes during a block-

design number-guessing task which probes reward processing neural circuitry known to be 

altered in MDD (paradigm described in Appendix I.2 and Fig. S2) (12; 13). This task includes 

trials in which money is lost for a wrong guess but not gained for a correct guess and trials in 

which money is gained for a correct guess but not lost for a wrong guess. The participant’s 

differential brain activation is measured between punishing vs. rewarding trials. MRI acquisition 

details can be found in Table S1. Participants whose MRI contained focal signal loss or clipped 

field-of-view and who did not complete 8 weeks of a given treatment were removed. The 

analyzed cohort included 106 who completed 8 weeks of sertraline, 116 for placebo, and 37 for 

bupropion (222 total unique participants).  

Data Augmentation 

 Data augmentation is commonly employed in deep learning to increase performance 

and avoid overfitting when data is limited (14). This technique generates additional image data, 

which reflects the natural diversity in the population, by perturbing the original acquired images. 

The approach used here was developed specifically for 4D fMRI and demonstrated to 

substantially improve deep learning performance in multiple neuroimaging modeling tasks (15; 

16). Full detail of the approach is provided in Supplement, Appendix I.3. Augmentation was 

applied 10 times for each original fMRI, providing a total of 1060 images for sertraline, 1160 for 
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placebo, and 370 for bupropion. Importantly, this augmented data was used only during model 

training and not during evaluation. Additional results in Table S4 detail the performance 

improvement achieved with vs. without augmentation. 

MRI Preprocessing and Feature Extraction 

Original and augmented fMRI were preprocessed using standard steps including skull-

stripping, head motion correction, spatial normalization, and spatial smoothing with a 4mm 

FWHM kernel (see Supplement, Appendix I.4). Three contrast maps were computed for each 

participant, quantifying brain activation in the initial anticipation phase of each number-guessing 

trial, reward expectancy (differential activation in rewarding vs. punishing trials), and prediction 

error (after wrong guesses). Each contrast map was parcellated into 200 functional brain 

regions using spatially-constrained spectral clustering (13), yielding a total of 600 fMRI features 

for each participant. See Appendix I.4-8 for preprocessing details. Site effect did not have a 

significant impact on the results, and there was no association between motion and treatment 

outcome (Fig. S3 and Fig. S4). 

Acquisition of Clinical Measurements 

In addition to imaging features, 95 pre-treatment clinical measures and demographic 

features acquired on the same day as imaging were also included as predictor inputs, as 

machine learning models are suitable for combining such information (8; 9). Demographics 

consisted of race, ethnicity, age, education, biological sex, and marital status. Clinical measures 

included total scores and sub-scores for several participant-reported forms and clinician-

administered assessments (Table S2). These included measurements such as HAMD, MASQ, 

and QIDS-SR16 (pre-treatment depression severity), CTQ (childhood trauma), ASRM (mania), 

CSSRS (suicide risk), STAI (anxiety), episode duration, and SAPAS (personality traits).  

Participant and family psychiatric history items were also included. 
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Deep Learning Model Training and Evaluation 

Feed-forward neural networks were constructed to take fMRI and clinical features as 

inputs and predict ΔHAMD. A separate model was trained for each treatment: sertraline, 

bupropion, and placebo. Given the current unavailability of a similar second dataset for external 

validation, models were evaluated using nested cross-validation, which provides the next best 

estimate of real-world predictive performance (17; 18). For the sertraline and placebo models, 

20 outer and 20 inner folds were used, while the bupropion model was validated with 15 outer 

and 15 inner folds given the smaller original sample size. Technical details of the model 

architecture (Fig. S5), hyperparameter optimization (Table S3), and nested cross-validation 

(Appendix I.9) are provided in the Supplement. 

Accuracy metrics for predicting ΔHAMD included R2 (coefficient of determination) and 

the root mean squared error (RMSE). The ΔHAMD predictions together with the baseline HAMD 

values were thresholded to compute predictions of the two binary outcomes: remission and 

response. Accuracy metrics for these binary outcomes included predictive value (PPV), area 

under the receiver operating characteristic curve (AUROC), and number-needed-to-treat (NNT). 

The NNT estimates the number of patients that would need to be treated, based on the model’s 

prediction of remission/response, to achieve one additional success over random treatment 

assignment. Permutation testing was performed to verify the statistical significance of each 

model’s performance (19), while the most important predictive features learned by the model 

were identified using the partial derivative method (20; 21) (Appendix I.11-12). In the Results, 

the 20 most important features are reported for each model; remaining features plateaued in 

importance. 
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RESULTS 

Prediction of Sertraline Treatment Outcome 

 For the sertraline treatment arm (n = 106, 69% female, mean age 38.4), the mean 

ΔHAMD during Stage 1 was 7.89 ± 7.16, remission rate was 39%, and response rate was 54% 

(Table 1). The sertraline predictive model achieved a substantial R2 of 48% (95% confidence 

interval [CI] of 33-61%) and RMSE of 5.15 in predicting ΔHAMD (Table 2, 1st row). NNT was 

3.33 and PPV was 69% for predicting remission, and NNT was 4.86 and PPV was 68% for 

predicting response. Permutation testing confirmed these results to be statistically significant 

with p < 0.01.  

Of the 20 most important features for predicting sertraline outcome, half were clinical 

features (Fig. 1). Psychomotor agitation and higher pre-treatment (week 0) symptomatic 

severity (17-item and 24-item HAMD total) predicted greater improvement (had a positive 

association with HAMD reduction). Family history of suicide, comorbidities (SCQa total score), 

and older age at first dysphoric or depressive episode predicted lesser improvement (had a 

negative association with HAMD reduction). Examining the imaging features, greater 

improvement was predicted by higher brain activation during reward expectancy in the right 

inferior frontal gyrus pars triangularis; higher anticipation activation in the right middle occipital 

gyrus and right middle temporal gyrus; and higher prediction error activation in the right superior 

temporal gyrus. Lesser improvement was predicted by higher prediction error activation in left 

crus 1 of the cerebellum; higher reward expectancy activation in the right supramarginal gyrus 

and right posterior cingulum; and higher anticipation activation in the left superior frontal gyrus. 

Prediction of Placebo Treatment Outcome 

In the placebo treatment arm (n = 116, 63% female, mean age 37.4), the mean ΔHAMD 

during Stage 1 was 6.70 ± 6.93, not significantly different from the mean ΔHAMD of the 

 
a Self-Administered Comorbidity Questionnaire 
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sertraline arm (p = 0.11). Remission and response rates were 33% and 35% respectively (Table 

1). The placebo model attained an R2 of 28% (95% CI of 15-42%) and RMSE of 5.87 for 

predicting ΔHAMD on held-out test data (Table 2, 2nd row), with p < 0.01 upon permutation 

testing. NNT was 2.06 and PPV was 81% for predicting remission, and NNT was 2.95 and PPV 

was 69% for predicting response (p = 0.02).  

 Clinical features most important for predicting outcomes (Fig. 2) included concurrent 

panic disorder and hypersomnia (from SCIDa), older age, and anhedonia (MASQb anhedonic 

depression score), all of which predicted lesser improvement. Greater improvement was 

predicted by Asian race and separated marital status (see Appendix II.4 in Supplement for 

discussion of caveats), NEOc openness score, and longer periods spent without dysphoria. The 

imaging features were distinct from those learned by the sertraline model (Fig. 1). Greater 

improvement was predicted by higher anticipation activation in the right middle occipital gyrus; 

higher reward expectancy activation in the right supramarginal gyrus; and higher  prediction 

error activation in the left superior temporal gyrus, right inferior occipital gyrus, and left superior 

parietal lobule. Lesser improvement was predicted by higher prediction error activation in the left 

cerebellum, right middle temporal gyrus, and left middle frontal gyrus and higher anticipation 

activation in the left inferior occipital gyrus.  

Prediction of Bupropion Treatment Outcome 

Given the smaller sample size of the bupropion group (n = 37, 70% female, mean age 

37.5), these results should be considered with caution compared to the sertraline and placebo 

groups. Nevertheless, they are presented here for completeness. Mean ΔHAMD was 5.46 ± 

5.57, remission rate was 32%, and response rate was 41% for bupropion-treated participants 

(Table 1). This model achieved R2 of 34% (95% CI of 10-59%) and RMSE of 4.46 in predicting 

 
a Structured Clinical Interview for DSM-5 
b Mood and Anxiety Symptom Questionnaire 
c NEO-Five Factor Inventory 



   

10 
 

ΔHAMD (Table 2, 3rd row). NNT was 2.35 and PPV was 75% for predicting remission, and NNT 

was 1.68 and PPV was 100% for predicting response. These performance values were 

significant p < 0.01 and are an improvement from our previously published bupropion model 

trained without data augmentation, which demonstrated R2 of 26% and RMSE of 4.71 (10). 

Clinical features predicting greater improvement (Fig. 3) included more education and 

family history of mental illness or depression, while only completing up to high school and 

concurrent anxious distress (from SCID) predicted lesser improvement. Important imaging 

features that predicted greater improvement included higher prediction error activation in the 

right middle cingulate cortex and right caudate; higher anticipation activation in the right 

posterior cingulate cortex; and higher reward expectancy activation in cerebellum right crus 1 

and the right hippocampus. Predictors of lesser improvement included higher  anticipation 

activation in the right cerebellum and right superior frontal gyrus; higher reward expectancy 

activation in the left caudate, left medial orbitofrontal cortex, and left crus 1 of the cerebellum; 

and higher prediction error activation in the bilateral lingual gyri.  

Patterns of Clinical Improvement Associated with Predicted Outcomes 

 Fig. 4 compares the change in true HAMD over the treatment period between 3 groups 

of participants: those with the greatest predicted improvement (top 25%), the least predicted 

improvement (bottom 25%), and the remaining 50%. For all treatments, the participants with 

greatest predicted improvement exhibited much faster improvement than others within the 

treatment group, in addition to starting at higher severity (see Fig. S6 for plots of unnormalized 

HAMD). For the sertraline group (Fig. 4a), participants began demonstrating a marked 

separation in trajectories at week 3. In the placebo group, participants demonstrated a marked 

separation by week 5 (Fig. 4b). The bupropion group (Fig. 4c), which had the smallest sample 

size, demonstrated a similar though smaller separation between participants with greatest vs. 

least predicted improvement.  
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Treatment Specificity of the Predictive Models 

To test whether the models had identified composite predictive biomarkers that are 

specific to each treatment, the model for each treatment was evaluated on participants from the 

other two treatment arms. In each case, the predictive performance was low (negative R2), 

confirming that each model learned treatment-specific predictive features.  

Ablation experiments and comparative statistical approaches 

 Ablation experiments indicated that both the combination of imaging and 

clinical/demographic features and fMRI data augmentation were necessary to achieve the 

observed performance (Table S4). A statistical parametric mapping analysis found no 

significant fMRI correlates of treatment outcome. Multiple classical machine learning 

approaches were tested, including an elastic net regressor, using the same clinical and 

augmented imaging features and same cross-validation method, but these did not explain any 

variance in the data. These results support the hypothesis that deep learning adds value for 

moderator identification. See Appendix II.1-2 for details. 

DISCUSSION 

These results describe the first ever deep learning predictive models for three 

treatments. All 3 models explained a substantial proportion of the variance in ΔHAMD, and NNT 

for predicting remission ranged from 2.35 for bupropion to 3.33 for sertraline, equal to or better 

than the NNTs of many depression treatments(22). Importantly, remission rates were similar 

across the 3 treatments at the group level: 39% for sertraline, 33% for placebo, and 32% for 

bupropion. This reinforces the need for tools that predict individual outcomes and preemptively 

identify the individuals who will respond. Note that given the cross-over design of the study, 

where participants were switched to bupropion after failing sertraline in Stage 1, the bupropion 

results should not be directly compared to the other treatment groups, which is discussed 

further in the limitations section.  
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Higher prediction accuracy was achieved than previously published predictors of 

individual antidepressant outcome. Etkin et al. developed an escitalopram predictor using 

cognitive and emotional behavioral measures achieving an NNT of 3.8, but their results were 

limited to cognitively-impaired individuals(23). Gordon et al. developed predictors for 

escitalopram and venlafaxine with NNTs of 2.7 and 4.6, respectively(24). They also developed a 

sertraline predictor with NNT of 3.5 and PPV of 43%, lower than the NNT of 3.33 and 62% PPV 

achieved here. Dunlop et al. used functional connectivity from resting-state fMRI to predict 

remission on escitalopram or duloxetine with AUROC of 0.72 (25). While this exceeds the 

AUROC of 0.60 and 0.71 for sertraline and bupropion achieved here, their results were not 

validated on held-out data for a less biased estimate of real-world performance. Previous 

analyses of other data modalities from EMBARC have explained similar or less variance in 

antidepressant outcomes, compared to the 48% for sertraline achieved here. Fonzo et al. 

explained 24% of the variance in sertraline outcomes using emotion task fMRI (26). Wu et al. 

explained 36% of the variance for sertraline and 17% for placebo using whole-brain resting-

state EEG measurements (27). Pizzagalli et al. explained 40% of the variance in treatment 

outcomes using anterior cingulate cortex activity from EEG combined with clinical and 

demographic features, though this was neither antidepressant-specific nor validated on held-out 

data (28).  

The combination of these predictive models presents a possible precision medicine 

approach for antidepressant selection. In practice, a patient would undergo a pre-treatment 

fMRI scan, and each model would be applied to provide within seconds a prediction of response 

to each treatment. The clinician could then prioritize the treatment with the best predicted 

outcome. Future imaging studies encompassing more treatments would allow the construction 

of additional treatment-specific models. Additionally, future studies are also needed to externally 

validate these preliminary models on a separate dataset with compatible data.  
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Examination of candidate neuroimaging biomarkers 

The important imaging features identified by the models can be compared to existing 

studies of reward processing, MDD pathophysiology, and antidepressant response biomarkers 

(Table 3). In this section, the features are categorized into those with a previously known 

neurophysiological role in MDD and those that are novel and could warrant further investigation.  

Both the sertraline and placebo models identified predictive regions in the prefrontal 

cortex (PFC), previously implicated in altered reward processing in MDD (29–32). The 

bupropion model identified other implicated regions, namely the middle cingulate cortex, 

caudate, and orbitofrontal cortex. For all treatment groups, activation in the frontal regions 

predicted lesser HAMD improvement.  

Interestingly, cerebellar regions were predictive for all models. Though traditionally 

associated with motor control, recent developments have strongly linked the cerebellum to 

reward processing and particularly error-based learning (33; 34). For example, functional 

connectivity between cerebellar crus 1 and the PFC during reward processing was found to be 

elevated in MDD (35). Here, cerebellar activation during prediction error and reward expectancy 

was an important predictor for all models. These results suggest that cerebellum, especially 

crus 1, should be a target of future treatment moderator studies.  

Other regions reported to have abnormal connectivity in MDD include the supramarginal 

gyrus, where reward expectancy activation predicted better sertraline outcome and worse 

placebo outcome, and the pars triangularis, which was an important feature for the sertraline 

model (36–38). Additionally, the bupropion model identified important predictive regions 

associated with emotional processing. Higher reward expectancy activation in the hippocampus 

predicted greater HAMD improvement. The hippocampus has been implicated in mood 

dysregulation in MDD through MRI volumetry and PET metabolic activity (29; 39; 40). Another 

bupropion predictive region was the posterior cingulate cortex, where emotion processing 

activation was previously shown to be modulated by bupropion (41).  
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Several regions were learned that have not previously associated with MDD (Table 3, 

bottom row). These included occipital and temporal regions for the sertraline and placebo 

models and superior parietal lobule for the placebo model. Further fMRI studies with other tasks 

may help to uncover their exact involvement in treatment response.  

Synergy between neuroimaging and clinical features 

The predictive clinical and demographic features are discussed in detail in the 

Supplement, Appendix II.4. Of note, psychomotor agitation was the most important feature for 

sertraline, predicting greater improvement. Pre-treatment HAMD score, family history of suicide, 

and comorbidity score were also important features. The placebo model identified concurrent 

panic disorder, hypersomnia, and older age as important features. For the bupropion model, 

education level, family history of mental illness, and anxious distress were important. Notably, 

this is one of the first studies to synergize imaging measurements with another modality of 

information, namely clinical assessments, and this combination yielded the highest predictive 

signals in the sertraline and placebo models. These findings support further investigations into 

cross-modal composite treatment moderators. 

Limitations 

While EMBARC is the largest randomized, placebo-controlled study of antidepressant 

response with fMRI to date, the cohort may not fully represent the general population. Inclusion 

criteria included early onset (before age 30), chronic (episode duration > 2 years), or recurrent 

(2+ episodes) disease which represents a MDD subpopulation. For further real-world 

performance estimation, the models should be tested on an additional, independent dataset. In 

the meantime, the rigorous cross-validation employed here provides high confidence that the 

results will generalize to additional cohorts.  

For the sertraline treatment group, there is a potential contribution of placebo effect in 

the treatment outcome for some participants, given that the overall remission rates of the 
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sertraline and placebo groups were similar. To fully separate the medication effect from the 

placebo effect would likely require a fully crossed over study, in which participants received both 

sertraline and placebo treatments. In the meantime, the discriminant validity of the sertraline 

model, i.e. the inability of this model to predict on the placebo group, indicates that it did 

primarily learn a sertraline-specific biomarker.   

A limitation for the bupropion treatment group comes from the two-stage crossover study 

design, which may have biased bupropion recipients to those less responsive to 

antidepressants and caused carry-over effects due to lack of a washout period. Consequently, 

the bupropion results should be compared to the sertraline and placebo results with caution. 

Follow-up studies with wider treatment design are warranted. 

The bupropion group was limited to 37 participants, however, other studies have found 

significant biomarkers with only 10-20 participants(31; 5; 41). Moreover, data augmentation was 

used to simulate additional fMRI samples, yielding 370 total images for bupropion model 

training. The 95% confidence intervals were reported for each R2 accounting for sample size 

(before data augmentation), indicating that at worst, the model still explained 10% of the 

variance. Furthermore, permutation testing to check the significance of results helped to ensure 

that findings were not spurious. 

Conclusion 

This is the first application of deep learning to predict individual treatment outcomes from 

fMRI in MDD. Deep learning models explained a substantial portion of the variance in treatment 

outcomes, integrating clinical assessments with imaging data. Important predictive clinical 

features can readily inform clinical treatment decision-making. Examination of the predictive 

imaging features revealed brain regions in concordance with previous knowledge of MDD 

neurophysiology as well as regions not previously implicated. Future efforts to develop 

analogous measurements of reward processing in these regions, such as through behavioral 
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markers, may form clinically useful tools for treatment selection. This work is an important step 

towards expediting the selection of appropriate antidepressants and achieving personalized 

treatment. 
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FIGURE LEGENDS 

Figure 1. The twenty most important features learned by the sertraline outcome prediction model. 

Importance was measured as the partial derivative of the model prediction output with respect to 

the feature. Left) Features are ranked by descending importance and colored by feature type. 

The mean importance and 95% confidence interval over the 20 outer cross-validation folds are 

shown. Right) Imaging features are visualized as colored ROIs in the study-specific brain atlas 

and overlaid on a “glass brain” view of the MNI brain template (see online version for color figure). 

Abbreviations: HAMD – Hamilton Rating Scale for Depression, AN – anticipation, RE – reward 

expectancy, PE – prediction error, L – left, R – right. See Table S2 for abbreviations for clinical 

measures.  
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Figure 2. The twenty most important features learned by the placebo outcome prediction model. 

Importance was measured as the partial derivative of the model prediction output with respect to 

the feature. Left) Features are ranked by descending importance and colored by feature type. 

The mean importance and 95% confidence interval over the 20 outer cross-validation folds are 

shown. Right) Imaging features are visualized as colored ROIs in the study-specific brain atlas 

and overlaid on a “glass brain” view of the MNI brain template (see online version for color figure).. 

See Figure 1 for abbreviation definitions. 
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Figure 3. The twenty most important features learned by the bupropion outcome prediction 

model. Importance was measured as the partial derivative of the model prediction output with 

respect to the feature. Left) Features are ranked by descending importance and colored by feature 

type. The mean importance and 95% confidence interval over the 20 outer cross-validation folds 

are shown. Right) Imaging features are visualized as colored ROIs in the study-specific brain atlas 

and overlaid on a “glass brain” view of the MNI brain template (see online version for color figure).. 

See Figure 1 for abbreviation definitions. 
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Figure 4. Association between predicted treatment outcomes from baseline imaging measures 

and longitudinal trajectories of clinical improvement. For each treatment group—a) sertraline, b) 

placebo, and c) bupropion—participants were ranked by predicted treatment outcome. 

Participants were then grouped into the 25% with the greatest predicted improvement, the 25% 

with least predicted improvement, and the remaining 50% (“others”). The trajectories of clinical 

improvement, measured as the mean change in HAMD score from baseline, over the 8-week 

treatment period are shown for each group. Steeper slopes indicate a faster rate of symptomatic 

improvement. The 95% confidence interval is shown as a shaded area around each line. See 

Figure S6 in the Supplement for plots of absolute HAMD score (not normalized to baseline).  
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TABLES 

  

Table 2. Outcome prediction performance for the three treatments investigated. Deep 

learning models were trained to predict 8-week ΔHAMD. Performance metrics for this target 

include the coefficient of determination (R2) and root mean squared error (RMSE). To obtain 

predictions of remission and response, which are binary variables, model outputs were 

thresholded post-hoc using the HAMD criteria for remission (HAMD ≤ 7 at week 8) and 

response (decrease in HAMD ≥ 50%). Performance metrics for remission and response are 

number-needed-to-treat (NNT), positive predictive value (PPV) and area under the receiver 

operating characteristic curve (AUROC). Statistical significance of these performance 

measurements over chance accuracy was measured using permutation testing, and the p-

values are presented here.  

Treatment 

Prediction target 

ΔHAMD Remission Response 
R2 RMSE NNT PPV AUROC NNT PPV AUROC 

Sertraline 48% 

p < 0.01 

5.15 

p < 0.01 

3.33 

p < 0.01 

0.69 

p < 0.01 

0.60 

p=0.14 

4.86 

p < 0.01 

0.68 

p < 0.01 

0.62 

p < 0.01 

Placebo 28% 

p < 0.01 

5.87 

p < 0.01 

2.06 

p = 0.02 

0.81 

p = 0.02 

0.65 

p = 0.06 

2.95 

p = 0.02 

0.69 

p = 0.02 

0.67 

p < 0.01 

Bupropion 34% 

p < 0.01 

4.46 

p < 0.01 

2.35 

p < 0.01 

0.75 

p < 0.01 

0.71 

p < 0.01 

1.68 

p < 0.01 

1.00 

p < 0.01 

0.57 

p = 0.14 

 

Table 1. Demographics, pre-treatment clinical characteristics, and 8-week treatment 

outcomes for sertraline, placebo, and bupropion treatment groups.  

 Sertraline Placebo Bupropion 

Participants completing 8-week 
treatment 

126  114  41  

Total participants analyzed 106  116  37  
       
Demographics       
Female 73 69% 73 63% 26 70% 
Race       

White 72 68% 83 72% 24 65% 
African American 20 19% 17 15% 8 22% 

Asian 5 5% 8 7% 3 8% 
Other 9 8% 8 6% 2 5% 

Hispanic 19  18% 22 19% 6 16% 
Employed 61 58% 69 59% 20 54% 
Age 38.38 ± 

13.95 
 37.40 ± 

12.80 
 37.51 ± 

14.32 
 

       
Clinical characteristics       
Age of first major depressive episode 16.16 ± 5.86  16.57 ± 5.91   16.11 ± 5.77  
Pre-treatment HAMD 18.60 ± 4.45  18.57 ± 4.26  18.00 ± 3.96  
       
Treatment dose at week 8 139 ± 26 mg  n/a  377 ± 115 

mg 
 

       
Treatment outcomes       
ΔHAMD (Week 8 – pre-treatment) 7.89 ± 7.16  6.70 ± 6.93  5.46 ± 5.57  
Remission 41 39% 38 33% 12 32% 
Response 57 54% 41 35% 15 41% 
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Table 3. Brain regions identified by the models as containing reward task activation features 

predictive of treatment outcome. The regions are categorized by neurophysiological roles in 

MDD as described in previous research. (↑) indicates that higher activation in the region was 

associated with greater predicted symptomatic (HAMD score) improvement, (↓) indicates 

association with lesser predicted improvement, and (↕) indicates that the directionality of the 

association varied among contrasts. Superscripts indicate which reward task contrast feature 

was learned by the model in a particular region; AN: anticipation, RE: reward expectancy, PE: 

prediction error.  

Reported 
neurophysiological role in 
MDD Sertraline Placebo Bupropion 

Reward processing activity 
altered in MDD29-32 

↓Prefrontal cortexAN 

 

↓Prefrontal cortexPE ↑Middle cingulate cortexPE 
↕CaudatePE,RE 

↓Orbitofrontal cortexRE  

Associated with reward 
processing, abnormal 
functional connectivity in 
MDD33-35 

↓Cerebellum Crus 1PE ↓Cerebellum Crus 1PE ↕Cerebellum Crus 1RE 

↓CerebellumAN 

Associated with abnormal 
functional connectivity in 
MDD36-38 

↓Supramarginal gyrusRE 
↑Inferior frontal gyrus, pars 
triangularisRE 

↑Supramarginal gyrusRE 
 

 

Associated with mood 
dysregulation in MDD29,39,40  

  ↑HippocampusRE  
 

Emotion processing 
activation modulated by 
bupropion41 

  ↑PCCAN 
 

Other regions identified by 
the predictive model 
without reported roles in 
MDD 

↑Middle occipital gyrusAN 
↑Middle temporal gyrusAN 
↑Superior temporal gyrusPE 
 

↑Middle occipital gyrusAN 

↕Inferior occipital gyrusPE,AN 
↓Middle temporal gyrusPE 
↑Superior temporal gyrusPE 

↑Superior parietal lobulePE 
 

 

 


