Preoperative prediction of lymph node metastasis from clinical DCE MRI of the primary breast tumor using a 4D CNN

Son Nguyen, Dogan Polat, Paniz Karbasi, Daniel Moser, Liqiang Wang, Keith Hulsey, Murat Can Cobanoglu, Basak Dogan, and Albert Montillo

23rd International Conference on Medical Image Computing & Computer Assisted Intervention
Oct 6th, 2020

Postdoctoral Scholar
Bioinformatics Department
PI: Dr. Albert Montillo

UT Southwestern Medical Center

MICCAI 2020 Lima

Deep Learning for Precision Health Lab
www.utsouthwestern.edu/labs/montillo
Outline

1 Introduction

2 Materials and methods

3 Results

4 Discussion & Conclusion
Breast cancer clinical procedure

- Breast cancer’s 5 years survival rate is only 27%. The presence of lymph node metastasis is the most important prognostic factor.
- Radiologists often use Ultrasound and MRI to diagnose metastasis of lymph node, results in clinical Node status or cNode.
- If cNode is positive, the patient will have to go through resection or biopsy.
- We believe image of the primary tumor has information of metastasis status.
cNode status in breast cancer

- cNode status is critical in choosing treatments for patients and crucial affect to outcome
- In this study, we consider cNode status belong to \(\{N0, N+\} \) which mean negative and positive metastasis
- A high sensitivity cNode prediction is desirable because false positive may result in uncaptured spread and 90% of breast cancer deaths are from spread to other parts of the body.
Materials

- Clinical 1.5T DCE MRI of 357 breast cancer patients with invasive breast cancer from two hospitals: UT Southwestern Medical Center and Parkland with two different MRI machines GE and Philips.
- We collect four clinical features: Age, ER, HER2, and Ki67.
- Ground truth of cNode status was determined by radiologists.

Table: Demographics and disease characteristic of subjects included in this analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Age</th>
<th></th>
<th>cNode status</th>
<th>Tumor stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>21-30</td>
<td>31-40</td>
<td>41-50</td>
<td>51-60</td>
</tr>
<tr>
<td>Percentage</td>
<td>2</td>
<td>16</td>
<td>34</td>
<td>23</td>
</tr>
<tr>
<td>Number of patients</td>
<td>7</td>
<td>57</td>
<td>121</td>
<td>82</td>
</tr>
</tbody>
</table>
Data pre-processing

- Input are subtracted DCE MRI of the primary tumor, voxelwise cropped time3-time1, time4-time1, time5-time1

![Image](image_url)

Figure: Preprocessing the volumetric DCE MRI. (a) primary tumor is radiologist delineated at time3 in each slice (green contour), (b) MRI is cropped to a cuboidal volume around tumor, (c) sagittal view showing breast at time1, (d) tumor is enhanced by computing difference images, shown here: time3-time1.
Data partitioning and augmentation

- Group 10-fold partitioning, with 2 held out set, 1 for validation, the other one for testing.

- Augmentation: random rotation, random cropping, random noise, increase the data to 30x.

- We use weighted cost function to handle imbalanced data

\[
E = \frac{1}{N} \sum_{k=1}^{N} \sum_{c=1}^{2} (p_{c}^{k} - l_{c}^{k})^2 \cdot w_{c}
\]

(1)

where \(N \) is number of training samples, \(c \) is class index, \(p_{c}^{k} \) is output of \(k^{th} \) training sample, \(l_{c}^{k} \) is label of \(k^{th} \) training sample, and \(w_{c} \) is weight of class \(c \).
Hybrid 4D CNN model

- We develop different models corresponding with increasing number of data dimensions. We have clinical only, 2D CNN, 3D CNN, 4D CNN and 4D CNN hybrid model (combine DCE MRI and clinical data)

Figure: The 4D CNN hybrid model architecture.

(*)one data dimension is omitted
Results

Result of testing our hypothesis

<table>
<thead>
<tr>
<th>Clinical only</th>
<th>2D image</th>
<th>3D image</th>
<th>4D image</th>
<th>4D img & clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>TPR</td>
<td>AUC</td>
<td>TPR</td>
<td>AUC</td>
</tr>
<tr>
<td>0.55</td>
<td>0.24</td>
<td>0.61</td>
<td>0.35</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Features importance from clinical only model

![Feature importance chart](chart.png)
GradCAM result

![GradCAM Results](image_url)
Discussion

- Difference between hospital data is currently mitigated through preprocessing. Using a scanner agnostic model could be helpful.
- Unsupervised pretraining on external data may improve performance.
- Additional MRI contrasts could be added such as T2, ADC.
- Current method assumes minimal motion between MRI time frames, we will apply motion correction in the future.
Conclusion

• Demonstrate that MRI image of primary tumor has information for metastasis prediction.

• Saliency mapping shows that the model used tumor and peritumoral voxels to predict auxilla metastasis.

• Results are promising, look forward to presenting more results in the future.
Acknowledgements

Prof Albert Montillo
Dr. Son Nguyen
Cooper Mellema
Kevin Nguyen
Alex Treacher
Krishna Chitta
Dr. Zhiguo Shang
Vyom Raval

Contact Email: Son.Nguyen@UTSouthwestern.edu

Funding:

NIH R01-AG059288
NIH U01 CA207091-01A1
NIH F31-NS115348
Lyda Hill Foundation
Green Fellowship

Deep Learning for Precision Health Lab