
Preoperative Prediction of Lymph Node
Metastasis from Clinical DCE MRI of the
Primary Breast Tumor Using a 4D CNN

Son Nguyen1,2, Dogan Polat2, Paniz Karbasi1, Daniel Moser1, Liqiang Wang1,
Keith Hulsey2, Murat Can Çobanoğlu1, Basak Dogan2,
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Abstract. In breast cancer, undetected lymph node metastases can
spread to distal parts of the body for which the 5-year survival rate
is only 27%, making accurate nodal metastases diagnosis fundamental
to reducing the burden of breast cancer, when it is still early enough to
intervene with surgery and adjuvant therapies. Currently, breast cancer
management entails a time consuming and costly sequence of steps to
clinically diagnose axillary nodal metastases status. The purpose of this
study is to determine whether preoperative, clinical DCE MRI of the pri-
mary tumor alone may be used to predict clinical node status with a deep
learning model. If possible then many costly steps could be eliminated
or reserved for only those with uncertain or probable nodal metastases.
This research develops a data-driven approach that predicts lymph node
metastasis through the judicious integration of clinical and imaging fea-
tures from preoperative 4D dynamic contrast enhanced (DCE) MRI of
357 patients from 2 hospitals. Innovative deep learning classifiers are
trained from scratch, including 2D, 3D, 4D and 4D deep convolutional
neural networks (CNNs) that integrate multiple data types and pre-
dict the nodal metastasis differentiating nodal stage N0 (non metastatic)
against stages N1, N2 and N3. Appropriate methodologies for data pre-
processing and network interpretation are presented, the later of which
bolster radiologist confidence that the model has learned relevant fea-
tures from the primary tumor. Rigorous nested 10-fold cross-validation
provides an unbiased estimate of model performance. The best model
achieves a high sensitivity of 72% and an AUROC of 71% on held out
test data. Results are strongly supportive of the potential of the com-
bination of DCE MRI and machine learning to inform diagnostics that
could substantially reduce breast cancer burden.
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1 Introduction

Breast cancer is the most common cancer among women in many countries
including the USA and causes more premature deaths than any cancer other than
lung cancer. Among women with undetected breast lymph node metastasis, the
5 year survival rate is only 27% [3]. The presence of lymph node metastasis is the
single most important prognostic factor in breast cancer [1]. Beyond prognosis,
the detection of nodal metastases is used for cancer staging and to determine
the course of surgical treatment, and is an important index for postoperative
chemotherapy and radiotherapy.

The management of breast cancer entails a time consuming sequence of costly
steps to diagnose whether the patient has axillary nodal metastases. In many
hospitals this process entails: (1) ultrasound (US) imaging of the axilla along
with tumor diagnosis costing $750, (2) breast DCE MRI (if US is negative MRI
may still be positive) at $3,500, (3) axillary US again to reidentify the sentinel
node $750, (4) US guided biopsy at $1,500, (5) pathology evaluation of the
biopsy specimen costing $1,200. The earlier steps, typically (1) and (2), are used
towards the clinical diagnosis of the lymph node status, cNode, which has 4
levels:N0 (no nodal metastasis), and increasing levels of nodal metastasis: N1,
N2, and N3.

The purpose and clinical value of this study is to determine whether preop-
erative, clinical DCE MRI of the primary tumor may be used to predict node
status with a deep learning model. If possible then steps 1,3 and 4 could be elim-
inated or reserved for only those patients with uncertain or probable metastases.
Relying upon clinical MRI (1.5T) enables research results to have potential for
direct clinical impact without costly upgrades to 3.0T. Furthermore, methods
developed using the primary tumor will be applicable to most patients given the
current standard protocol that images the tumor, while axillary nodes may not
be in the field of view (FOV).

Dynamic contrast enhanced (DCE) MRI contains abundant information
about the vascularity and structure of the tumor and is valuable to quantify can-
cer aggressiveness. Recently, preliminary results demonstrated that hand crafted
tumoral features from 2D DCE MRI are can help predict nodal metastasis using
classical machine learning SVM [6]. While promising these results relied upon
research grade 3.0T MRI and were restricted to data from just 100 subjects
acquired at one hospital. Furthermore validation performance is reported rather
than more rigorous test set performance.

Deep learning has been shown to find useful patterns for image analysis [4].
It has been used to detect breast cancer with near expert radiologist accuracy
[7]. However to the best of our knowledge, deep learning has not been used to
predict axillary nodal metastasis from DCE MRI.

The strengths and contributions of this work are four-fold: (1) A 4D CNN
model is proposed that automatically learns to fuse information from 4D DCE
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MRI (3D over time) and non-imaging clinical information. (2) The model relies
exclusively on the primary tumor and does not require nodes to be within the
FOV nor high field strength imaging which may not be available. (3) The model
achieves a promising 72% accuracy while using rigorous nested cross-fold vali-
dation and while training and testing upon an extensive dataset of 357 subjects
from two hospital sites using two distinct image acquisition protocols and hard-
ware. (4) Saliency mapping demonstrates that the proposed model correctly
learns to utilize primary tumor voxels when identifying both metastatic and
non-metastatic subjects.

2 Materials and Methods

2.1 Materials

Clinical 1.5T DCE MRI was obtained from 357 breast cancer patients, whose
characteristics are summarized in Table 1. Data for each subject includes a sin-
gle precontrast and four serial dynamic image volumes acquired at a temporal
resolution of 90s/phase obtained before and immediately after intravenous bolus
infusion of a contrast agent. 221 subjects were obtained from Parkland Hospital,
Dallas, Texas where dynamic VIBRANT sagittal images were acquired with a
GE Optima MR450w 1.5T scanner using 0.1 mmol/kg gadopentetate dimeglu-
mine contrast medium. The remaining 136 subjects came from UT Southwestern
Medical Center, Dallas, Texas where dynamic FSPGR (THRIVE) axial images
are acquired with a Philips Intera 1.5T scanner using 0.1 mmol/kg Gadavist con-
trast medium. Additionally, four clinical features were obtained including age
(yrs), estrogen receptor status (ER), human epidermal growth factor receptor-
2 (HER2), and a marker for proliferation (Ki-67). Clinical node status (cNode)
ground truth was determined by one of 13 board-certified radiologists, fellowship-
trained in breast imaging and breast MRI, who assess the 4D DCE MRI and
ultrasound imaging information, clinical measures, clinical history available at
the time of the image reading.

2.2 Methods

Each subject has five 3D MRI volumes which are denoted as time1, time2, time3,
time4, time5. Board certified radiologists traced the boundary of the primary
tumor of each subject on the time3 volume. Then a 3D cuboidal bounding box
encompassing the tumor region of interest (ROI) and peri-tumoral area was
defined and used to crop each subject data to consistently-sized 3D volumes.
Three difference images were then defined for each subject by subtracting vox-
elwise the cropped time3-time1, time4-time1 and time5-time1. These difference
volumes are used to train the deep learning model and the processing steps are
illustrated in Fig. 1. Next the intensities for the difference images from each hos-
pital are harmonized by: (1) clipping the values of the lowest and highest 0.5%
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Table 1. Demographics and disease characteristic of subjects included in this analysis.

Variable Age cNode status Tumor stage

Category 21–30 31–40 41–50 51–60 61–70 71–80 81–90 N0 N1 N2 N3 T1 T2 T3 T4

Percentage 2 16 34 23 19 5 1 62 28 4 6 30 44 19 7

Number of

patients

7 57 121 82 68 18 4 221 101 13 22 107 157 68 25

intensities, and (2) computing the mean and standard deviation of the intensi-
ties per hospital and transforming the intensities to have zero mean and unit
variance.

The data is partitioned using nested, stratified group 10-fold cross-validation
with the test data held out and not used during training nor validation. This
ensured a subject’s data appears in only 1 fold and each fold has the same
ratio of patients from each hospital, and the same ratio of negative (cNode =
N0) and positive (N1, N2, N3) labels. Data is augmented 27× by small random
translation and rotation of the cropping volume.

In this work, we develop two-category classifiers to predict whether or not
there is lymph node metastasis. Our classifiers are predominantly CNNs [2]
because they automatically learn a hierarchy of intensity features from differ-
ence volumes. For brevity we explain the most complex 4D hybrid CNN model
that we build which takes as input a set of difference volumes and the clini-
cal data. The remaining models (e.g. 2D CNN, 3D CNN) are simpler and their
architectural details can be found in the supplemental file. The 4D hybrid CNN
model consist of four 4D convolutional layers and three fully connected layers.
Each convolutional layer is followed by max-pooling. Then the output of the
convolutional layers are concatenated with the clinical features to form the final
classifier and all layers use batch normalization [5], except the last which outputs
the metastasis diagnosis. Figure 2 visualizes the model architecture and how the
data dimensions change in each layer.

The output of the model can be summarized in Eq. (1)

pk = f(xk, ck) (1)

where xk is the set of 3D difference images for the kth patient, ck is their clini-
cal data, and 2-dimensional p is the predicted probabilities that the model f()
assigns to the two output categories. The threshold is >= 0.5 for positive pre-
diction and < 0.5 for negative prediction.

Since the dataset has moderate imbalance (62% of subjects are non-
metastatic) and we would like the model to focus more on positive than negative
cases, we apply a weighted cost function where the cost for positive cases is twice
that of the negative cases:

E =
1
N

N∑

k=1

2∑

c=1

(pkc − lkc )2 · wc (2)



330 S. Nguyen et al.

Fig. 1. Preprocessing the volumetric DCE MRI. (a) primary tumor is radiologist delin-
eated at time3 in each slice (green contour), (b) MRI is cropped to a cuboidal volume
around tumor, (c) sagittal view showing breast at time1, (d) tumor is enhanced by
computing difference images, shown here: time3-time1. (Color figure online)

where E is the cost function, N is the number of subjects, lk and pk are the
label and prediction of the kth patient respectively, and w is the weight assigned
according to class label where: w1 = 1 and w2 = 2. This MSE cost function works
well on classification tasks when using a softmax output [10]. Model fitting is
trained from scratch and model weights are learned with the Adam [9] optimizer
using: an adaptive learning rate initialized to 0.001, beta1 = 0.9, beta2 = 0.999,
and a batch size of 36. Models are implemented in Tensorflow and trained on a
Linux workstation with 2 NVIDIA V100s GPUs.

3 Results

Five types of input feature sets were tested: clinical features alone, 2D images
alone, 3D images alone, 4D images (3D + time), and 4D with clinical features.
Results are summarized in Table 2. With clinical data only, an XGBoost classi-
fier [11] attained a performance just above chance accuracy with an AUC = 0.55.
Dense feedforward neural networks did not perform better. The relative impor-
tance of the 4 clinical features computed as f scores, are shown in Fig. 3. Ki67
and HER2 are top ranked and have approximately equal importance while age
and ER status are less important. Using 2D difference images and a deep 2D
CNN, performance improved to an AUC = 0.61. Using the additional context of
3D difference images performance further improved to AUC = 0.66. Each 3D
difference image is input independently, however group stratification is used so
that a subject’s data appears in either train, validation or test. Subsequently,
all three 3D difference images of a patient (time3-time1, 4-1, and 5-1) are con-
catenated forming an input 4D tensor to the 4D CNN. This produced the best
results including an AUC = 0.67 and, when combined with clinical data an AUC
of 0.71 and true positive rate of 0.72. This compares favorably with the results
of a related study [13] in which texture features were manually specified.
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Fig. 2. The 4D CNN model architecture. The model consists of 4 convolutional layers
(red pyramids) followed by 3 fully connected layers (horz. arrows). Input and feature
maps are 4D tensors; to visualize them they are rendered as 3D volumes by omitting
one dimension, e.g. the input layer (left) is 50×50× 50×3 but rendered as 50×50×3.
Four clinical features are concatenated with the 4 outputs of last conv. layer, creating an
8-vector as input to the dense layers. One-hot encoded output layer predicts probability
of nodal metastasis and no metastasis. Illustration generated using [12]. (Color figure
online)

Fig. 3. Relative importance of each clinical feature. Features with higher scores are
more valuable for predicting metastasis.

Table 2. Comparative performance across input feature sets on the held out test set.
Increasing prediction performance was observed across the five sets of inputs evaluated
including: only clinical features, 2D images, 3D images, 4D images (3D + time), and
4D with clinical features.

Clinical only 2D image 3D image 4D image 4D img & clinical

AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR

0.55 0.24 0.61 0.35 0.66 0.84 0.67 0.72 0.71 0.72

4 Discussion

The results (Table 2) suggest the more data the model has the better its per-
formance. This makes sense: 4D provides spatiotemporal context that 3D and
2D lack, while clinical features provide biomolecular information not accessible
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Fig. 4. Important voxels revealed
through saliency mapping. Saliency
mapping with Grad-CAM (left column)
demonstrates that the primary active
tumor voxels in MRI (right column)
are those most valuable for predicting
boht (a) non-metastatic cancer, and (b)
axillary metastatic cancer.

Table 3. Comparison prediction accu-
racy and stability across feature sets.
Both accuracy and stability increases
when clinical features are added to the
4D CNN.

through MRI. To reveal which regions the top model learned as important Grad-
CAM [8] was used to generate saliency maps. The most important voxels to
predict metastasis free (Fig. 4a) or high probability of metastasis (Fig. 4b) are
the primary tumor and its surround. More distal voxels are less important. That
healthy breast tissue and non-breast tissue are of less value, makes sense biolog-
ically, and since the algorithm was not explicitly provided the non-linear tumor
boundary this saliency map results suggests the model learned the segmentation
on its own. Additional benefits are observed when adding clinical data to the
4D model including improving both the AUC and the true negative rate (TNR),
while simultaneously reducing the variance across folds (Table 3), which further
increases confidence in these performance estimates.

Our approach has some room for further improvement. Our reported AUC is
0.72 is very promising, but still needs improvement. We expect to improve the
AUC to at least 0.8 to facilitate clinical adoption, while 0.9 is a long term tar-
get. There are several steps that can lead us there. Differences between hospital
data is currently mitigated through preprocessing, however adversarial domain
adaption could directly learn a model agnostic to these differences and may
improve performance. Second, unsupervised pretraining on external data could
improve performance. Third, other data combination methods beyond concate-
nation could be beneficial. Fourth, our preprocessing assumes no motion between
MRI time frames, however patient movement can occur and could impede model
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performance. In the future we will apply motion correction to suppress any dif-
ference image artifact.

5 Conclusions

This work demonstrates that a deep 4D CNN has the potential to learn to pre-
dict axillary nodal metastases with high accuracy through the judicious fusion of
spatiotemporal features of the primary tumor visible in DCE MRI, and that this
further improves with the addition of clinical measures. Such high precision non-
invasive methods that utilize standard clinical MRI (1.5T) and do not require
complete imaging of the axillary nodes would fit well with clinical practices
and could with further refinement, help patients avoid the costs associated with
unnecessary lymph node surgery. The proposed method was tested on an exten-
sive dataset of 357 subjects from 2 hospitals with distinct imaging protocols.
Saliency mapping demonstrated that the model used tumor voxels to predict
nodal metastasis which agrees with the expectation that aggressive tumors that
spread to the nodes have appearance distinct from less invasive tumors. Such
diagnostic methods hold the potential to streamline time consuming and costly
steps currently used to clinically diagnose nodal metastases, improve doctor effi-
ciency, and help select safe and effective treatments that reduce postoperative
complications.
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