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Abstract. Major depressive disorder is a primary cause of disability
in adults with a lifetime prevalence of 6-21% worldwide. While medical
treatment may provide symptomatic relief, response to any given antide-
pressant is unpredictable and patient-specific. The standard of care re-
quires a patient to sequentially test different antidepressants for 3 months
each until an optimal treatment has been identified. For 30-40% of pa-
tients, no effective treatment is found after more than one year of this
trial-and-error process, during which a patient may suffer loss of employ-
ment or marriage, undertreated symptoms, and suicidal ideation. This
work develops a predictive model that may be used to expedite the treat-
ment selection process by identifying for individual patients whether the
patient will respond favorably to bupropion, a widely prescribed antide-
pressant, using only pretreatment imaging data. This is the first model
to do so for individuals for bupropion. Specifically, a deep learning pre-
dictor is trained to estimate the 8-week change in Hamilton Rating Scale
for Depression (HAMD) score from pretreatment task-based functional
magnetic resonance imaging (fMRI) obtained in a randomized controlled
antidepressant trial. An unbiased neural architecture search is conducted
over 800 distinct model architecture and brain parcellation combinations,
and patterns of model hyperparameters yielding the highest prediction
accuracy are revealed. The winning model identifies bupropion-treated
subjects who will experience remission with the number of subjects
needed-to-treat (NNT) to lower morbidity of only 3.2 subjects. It attains
a substantially high neuroimaging study effect size explaining 26% of the
variance (R? = 0.26) and the model predicts post-treatment change in
the 52-point HAMD score with an RMSE of 4.71. These results support
the continued development of fMRI and deep learning-based predictors
of response for additional depression treatments.
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1 Introduction

Major depressive disorder (MDD) has a lifetime prevalence of 6-21% worldwide
and is a major cause of disability in adults [12]. Though half of MDD cases
are treated with medication, there are dozens of antidepressants available and a
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patient’s response to each is highly unpredictable [7]. The current standard in
healthcare entails a long trial-and-error process in which a patient tries a series
of different antidepressants. The patient must test each drug for up to 3 months,
and if satisfactory symptomatic improvement is not achieved within this time,
the clinician modifies the dosage or selects a different drug to test next. This
trial-and-error process may take months to years to find the optimal treatment,
during which patients suffer continued debilitation, including worsening symp-
toms, social impairment, loss of employment or marriage, and suicidal ideation.
It has been shown that 30-40% of patients do not find adequate treatment after
a year or more of drug trials [19, 22]. Consequently, a predictive tool that helps
prioritize the selection of antidepressants that are best suited to each patient
would have high clinical impact.

This work demonstrates the use of deep learning and pretreatment task-based
fMRI to predict long-term response to bupropion, a widely used antidepressant
with a response rate of 44% [15]. An accurate screening tool that distinguishes
bupropion responders from non-responders using pretreatment imaging would
reduce morbidity and unnecessary treatment for non-responders and prioritize
the early administration of bupropion for responders.

The use of functional magnetic imaging (fMRI) measurements to infer quan-
titative estimates of bupropion response is motivated by evidence for an asso-
ciation between fMRI and antidepressant response. For example, resting-state
activity in the anterior cingulate cortex as well as activity evoked by reward
processing tasks in the anterior cingulate cortex and amygdala have all been
associated with antidepressant response [17,13, 16].

In this work, predictive models of individual response to bupropion treatment
are built using deep learning and pretreatment, task-based fMRI from a cohort
of MDD subjects. The novel contributions of this work are: 1) the first tool
for accurately predicting long-term bupropion response, and 2) the use of an
unbiased neural architecture search (NAS) to identify the best-performing model
and brain parcellation from 800 distinct model architecture and parcellation
combinations.

2 Methods

2.1 DMaterials

Data for this analysis comes from the EMBARC clinical trial[23], which includes
37 subjects who were imaged with fMRI at baseline and then completed an
8-week trial of bupropion XL. To track symptomatic outcomes, the 52-point
Hamilton Rating Scale for Depression (HAMD) was administered at baseline
and week 8 of antidepressant treatment. Higher HAMD scores indicate greater
MDD severity. Quantitative treatment response for each subject was defined
as AHAMD = HAMD(week 8) — HAMD(baseline), where a negative AHAMD
indicates improvement in symptoms. The mean AHAMD for these subjects was
—b5.98+6.25, suggesting a large variability in individual treatment outcomes. For
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comparison, placebo-treated subjects in this study exhibited a mean AHAMD
of —6.70 £ 6.93.

Image Acquisition Subjects were imaged with resting-state and task-based
fMRI (gradient echo-planar imaging at 3T, TR of 2000ms, 64 x 64 x 39 image
dimensions, and 3.2 x 3.2 x 3.1mm voxel dimensions). Resting-state {MRI was ac-
quired for 6 minutes. Task-based fMRI was acquired immediately afterwards for
8 minutes during a well-validated block-design reward processing task assessing
reactivity to reward and punishment [8, 11]. In this task, subjects must guess in
the response phase whether an upcoming number will be higher or lower than 5.
They are then informed in the anticipation phase if the trial is a “possible win”,
in which they receive a $1 reward for a correct guess and no punishment for an
incorrect guess, or a “possible loss”, in which they receive a -$0.50 punishment
for an incorrect guess and no reward for a correct guess. In the outcome phase,
they are then presented with the number and the outcome of the trial.

2.2 Image Preprocessing

Both resting-state and task-based fMRI images were preprocessed as follows.
Frame-to-frame head motion was estimated and corrected with FSL. MCFLIRT,
and frames where the norm of the fitted head motion parameters was > 1lmm
or the intensity Z-score was > 3 were marked as outliers. Images were then
skull-stripped using a combination of FSL BET and AFNI Automask. To per-
form spatial normalization, fMRI images were registered directly to an MNI
EPI template using ANTs. This coregistration approach has been shown to bet-
ter correct for nonlinear distortions in EPI acquisitions compared to T1-based
coregistration [2,6]. Finally, the images were smoothed with a 6 mm Gaussian
filter.

Predictive features were extracted from the preprocessed task-based fMRI
images in the form of contrast maps (i.e. spatial maps of task-related neuronal
activity). Each task-based fMRI image was fit to a generalized linear model,

Y=XxPB+e

where Y is the time X wozels matrix of BOLD signals, X is the time X re-
gressors design matrix, B is the regressors x wozels parameter matrix, and €
is the residual error, using SPM12. The design matrix X was defined as de-
scribed in [11] and included regressors for the response, anticipation, outcome,
and inter-trial phases of the task paradigm. In addition, a reward expectancy
regressor was included, which had values of +0.5 during the anticipation phase
for “possible win” trials and —0.25 during the anticipation phase for “possible
loss” trials. These numbers correspond to the expected value of the monetary
reward /punishment in each trial. In addition to these task-related regressors and
their first temporal derivatives, the head motion parameters and outlier frames
were also included as regressors in X.
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After fitting the generalized linear model, contrast maps for anticipation
(Cantic) and reward expectation (C.) were computed from the fitted 3 coeffi-
cients:

Cantic = /Banticipation - ﬂinter—trial
CT’e = Brcward expectation

To extract region-based features from these contrast maps, three custom,
study-specific brain parcellations (later referred to as ss100, ss200 and ss400)
were generated with 100, 200, and 400 regions-of-interest (ROIs) from the resting-
state fMRI data using a spectral clustering method [5]. Each parcellation was
then used to extract mean contrast values per ROI. The performance achieved
with each of these custom parcellations, as well as a canonical functional atlas
generated from healthy subjects (Schaefer 2018, 100 ROIs) [20], is compared in
the following experiments.

2.3 Construction of Deep Learning Predictive Models

Dense feed-forward neural networks were constructed to take the concatenated
ROI mean values from the two contrast maps as inputs and predict 8-week
AHAMD. Rather than hand-tuning model hyperparameters, a random search
was conducted to identify a high-performing model for predicting response to
bupropion. The random search is an unbiased neural architecture search (NAS)
that was chosen because it has been shown to outperform grid search [1] and
when properly configured can provide performance competitive with leading
NAS methods such as ENAS [14].

200 architectures were sampled randomly from a uniform distribution over
a defined hyperparameter space (Table 1) and then used to construct models
that were trained in parallel on 4 NVIDIA P100 GPUs. All models contained a
single neuron output layer to predict AHAMD and were trained with the Nadam
optimizer, 1000 maximum epochs, and early stopping after 50 epochs without
decrease in validation root mean squared error (RMSE).

The combination of 200 model architectures with 4 different parcellations re-
sulted in a total of 800 distinct model configurations that were tested. To ensure
robust model selection and to accurately estimate generalization performance,
these 800 model configurations were tested with a nested K-fold cross-validation
scheme with 3 outer and 3 inner folds. Although a single random split is com-
monly used in place of the outer validation loop, a nested cross-validation ensures
that no test data is used during training or model evaluation and provides an
unbiased estimate of final model performance [24]. Within each outer fold, the
best-performing model was selected based on mean root mean squared error
(RMSE) over the inner folds. The model was then retrained on all training and
validation data from the inner folds and final generalization performance was
evaluated on the held-out test data of the outer fold. Repeating this process for
each outer fold yielded 3 best-performing models, and the mean test performance
of these models is reported here.
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Table 1. Hyperparameter space defined for the random neural architecture search. For
each model, one value was randomly selected from each of the first set of hyperparam-
eters; for each layer in each model, one value was randomly selected from the second
set of hyperparameters.

Hyperparameter Possible values
Per-model hyperparameters
Number of dense hidden layers 1,2,3,4,5
Number of neurons in 1°* hidden layer 32N for N € [1,...,16]
Activation for all layers Leaky ReLU, ReLLU, ELU, PReLLU
Learning rate 0.0001n for n € [1, ..., 50]

Per-layer hyperparameters
% decrease in neurons from previous layer|None, 0.25, 0.5, 0.75

Weight regularization Li, L2, Ly and Lo
Activity regularization L1, Lo, Ly and Lo
Batch normalization Yes, No

Dropout rate 0, 0.3, 0.5, 0.7

3 Results and Discussion

3.1 Neural Architecture Search (NAS)

Results indicate that the NAS is beneficial. In particular, a wide range of vali-
dation RMSE was observed across the 800 tested model configurations (Fig. 1).
Certain models performed particularly well achieving RMSE approaching 4.0,
while other model architectures were less suitable. NAS helped identify high-
performing configurations expediently.
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Fig. 1. Mean inner validation fold RMSE of the 800 model architecture & parcellation
combinations evaluated in the unbiased neural architecture search. Results from one
outer cross-validation fold are illustrated here, and findings for the other two folds were
similar.

The information from the NAS can be examined for insight into what config-
urations constitute high versus low performing models and whether the ranges
of hyperparameters searched were sufficiently broad. Towards this end, the hy-
perparameter distributions of the top and bottom quartiles of these 800 model



6 Nguyen et al.

configurations, sorted by RMSE, were compared. Substantial differences in the
hyperparameter values that yielded high and low predictive accuracy are ob-
served (Fig. 2). Notably, the custom, study-specific parcellation with 100 ROIs
(ss100) provided significantly better RMSE than the “off-the-shelf” Schaefer
parcellation (p = 0.023). Additionally, the top quartile of models using ss100
used fewer layers (1-2), but more neurons (384-416) in the first hidden layer,
compared to the bottom quartile of models. Note that unlike in a parameter sen-
sitivity analysis, where ideal results exhibit a uniform model performance over a
wide range of model parameters, in a neural architecture search, an objective is
to demonstrate adequate coverage over a range of hyperparameters. This objec-
tive is met when local performance maxima are observed. This is shown in (Fig.
2b,c,d) where peaks in the top quartile (blue curve) of model architectures are
evident.
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Fig. 2. Hyperparameter patterns for the top (blue) and bottom (orange) quartiles of
the 800 model configurations evaluated in the unbiased neural architecture search.
Representative results for one of the outer cross-validation folds are presented. a: Top
quartile models tended to use the ss100 parcellation, while bottom quartile models
tended to use the Schaefer parcellation. b-d: Distributions of three selected hyperpa-
rameters compared for the top and bottom quartiles of model configurations, revealing
the distinct patterns of hyperparameters for high-performing models. The top quartile
of model architectures have fewer layers (peaking at 1-2) but more neurons in the first
hidden layer (peaking at 384-416 neurons).

The best performing model configuration used an architecture with two hid-
den layers and the 100-ROI study-specific parcellation (ss100). Regression accu-
racy in predicting AHAMD in response to bupropion treatment was RMSE 4.71
and R? 0.26. This R? value (95% confidence interval 0.12-0.40 for n = 37) con-
stitutes a highly significant effect size for a neuroimaging study where effect sizes
are commonly much lower, e.g. 0.01-0.10 in [3] and 0.09-0.15 in [21]. Further-
more, this predictor identifies individuals who will experience clinical remission
(HAMD (week 8) <= 7) with number of subjects needed-to-treat (NNT) of 3.2
subjects and AUC of 0.71. This NNT indicates that, on average, one additional
remitter will be identified for every 3 individuals screened by this predictor.
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Table 2. Performance of the best model configuration from the neural architecture
search. To obtain classifications of remission, the model’s regression outputs were
thresholded post-hoc using the clinical criteria for MDD remission (HAMD (week 8) <
7). RMSE: root mean squared error, NNS: number needed to screen, PPV positive
predictive value, AUC': area under the receiver operating characteristic curve.

Target Performance
AHAMD R? 0.26 (95% CT 0.12-0.40), RMSE 4.45
Remission NNS 3.2, PPV 0.64, NPV 0.81, AUC 0.71

In comparison, clinically-adopted pharmacological and psychotherapeutic treat-
ments for MDD have NNTs ranging from 2-25 [18], and other proposed predic-
tors for antidepressants besides bupropion have reported NNTs of 3-5 [9, 10].
Therefore, this NNT of 3.2 has high potential for clinical benefit in identifying
individuals mostly likely to respond to bupropion.

When evaluated on sertraline and placebo-treated subjects from the this
dataset, the model demonstrated poor accuracy (negative R?), which is desir-
able because it indicates the model learned features specific to bupropion re-
sponse. Additionally, clinical covariates such as demographics, disease duration,
and baseline clinical scores were added to the data in another NAS, but this did
not increase predictive power. Lastly, less statistically complex models, includ-
ing multiple linear regression and a support vector machine, performed poorly
with negative R?, even after hyperparameter optimization with a comparable
random search of 800 configurations. This finding suggests that a model with a
higher statistical capability such as a neural network was needed to learn the
association between the data and treatment outcome.

3.2 Learned Neuroimaging Biomarker

Permutation feature importance was measured on the best-performing model
configuration to extract a composite neuroimaging biomarker of bupropion re-
sponse. Specifically, for each feature, the change in R? was measured after ran-
domly permuting the feature’s values among the subjects. This was repeated 100
times per feature, and the mean change in R? provided an estimate of the impor-
tance of each feature in accurate predicting bupropion response. The 10 most
important regions for bupropion response prediction are visualized in Fig. 3
and include the medial frontal cortex, amygdala, cingulate cortex, and striatum.
The regions this model has learned to use agree with the regions neurobiologists
have identified as key regions in the reward processing neural circuitry [4]. This
circuit is the putative target of bupropion and the circuit largely measured by
the reward expectancy task in this task-based fMRI study.

4 Conclusions

In this work, deep learning and an extensive, unbiased NAS were used to con-
struct predictors of bupropion response from pretreatment task-based fMRI.
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Fig. 3. The 10 most important ROIs for bupropion response prediction, as measured by
permutation feature importance. These included 5 regions in the anticipation contrast
map (Cantic, top row) and 5 regions in the reward expectation contrast map (Ce,
bottom row). Darker hues indicate greater importance in predicting AHAMD.

These methods produced a novel, accurate predictive tool to screen for MDD
patients likely to respond to bupropion, to estimate the degree of long-term
symptomatic improvement after treatment, and to identify patients who will not
respond appreciably to the antidepressant. Predictors such as the one presented
are an important step to help narrow down the set of candidate antidepressants
to be tested for each patient and to address the urgent need for individualized
treatment planning in MDD. The results presented also underscore the value of
fMRI and in MDD treatment prediction, and future work will target extension
to additional treatments.
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