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ABSTRACT 

 

Sub-concussive asymptomatic head impacts during contact 

sports may develop potential neurological changes and may 

have accumulative effect through repetitive occurrences in 

contact sports like American football. The effects of sub-

concussive head impacts on the functional connectivity of the 

brain are still unclear with no conclusive results yet 

presented. Although various studies have been performed on 

the topic, they have yielded mixed results with some 

concluding that sub concussive head impacts do not have any 

effect on functional connectivity, while others concluding 

that there are acute to chronic effects. The purpose of this 

study is to determine whether there is an effect on the 

functional connectivity of the brain from repetitive sub 

concussive head impacts. First, we applied a model free 

group ICA based intrinsic network selection to consider the 

relationship between all voxels while avoiding an arbitrary 

choice of seed selection. Second, unlike most other studies, 

we have utilized the default mode network along with other 

extracted intrinsic networks for classification. Third, we 

systematically tested multiple supervised machine learning 

classification algorithms to predict whether a player was a 

non-contact sports youth player, a contact sports player with 

low levels of cumulative biomechanical force impacts, or one 

with high levels of exposure. The 10-fold cross validation 

results show robust classification between the groups with 

accuracy up to 78% establishing the potential of data driven 

approaches coupled with machine learning to study 

connectivity changes in youth football players. This work 

adds to the growing body of evidence that there are detectable 

changes in brain signature from playing a single season of 

contact sports. 
 

Index Terms— machine learning, sub-concussive head 

impact, resting state networks, youth football  

 

1. INTRODUCTION 

 

Understanding the association between repetitive sub-

concussive head impacts in youth (ages 9-13) football players 

and healthy brain development is arousing growing concern, 

and yet the association is challenging to understand [9][3]. 

Although, professional and collegiate football has been the 

subject of intensive study, players at the youth level have 

received little to no attention despite constituting the clear 

majority (70%) of all football players [4]. Recent resting state 

functional MRI (rs-fMRI) studies revealed that changes in 

resting state networks can corresponds to pathophysiological 

changes. Indeed, there is growing evidence in the ability of 

functional neuroimaging (fMRI, MEG) to detect subtle 

changes in the functional connectivity due to sub-concussive 

impacts in youth football [11] [7]. 

 

TBI often affects the visual system; players sustaining a 

concussion frequently complain of sensitivity to visual 

stimuli. Therefore, we hypothesized that the visual networks 

would contain discriminatory information. Recently, Zhu 

David c. et al [13]  demonstrated the ability of functional 

connectivity of the default mode network (DMN) to serve as 

a potential biomarker to monitor dynamic changes in brain 

function after sports related concussion. Neurophysiological 

changes in youth football athletes with exposure to sub-

concussive impacts have also been reported with changes in 

the DMN [1]. There is increasing evidence that the 

hippocampus, a core region for human memory, should be 

included in the DMN. Since traumatic brain injury (TBI) 

often compromises memory we also hypothesized that the 

DMN would have telltale features that characterize injury 

level.  

 

Most previous studies use seed based approaches to detect 

changes in specific resting state network such as the DMN. 

Such results can critically depend on seed placement 

precision, while the location of the networks in the brain 

across subjects is variable. Therefore, we propose to use a 

data driven, model free approach coupled with the training of 

a machine learning classifier to characterize the association 

between cumulative head impact exposure categories (little 

to no exposure, light exposure, heavy exposure), and 

functional connectivity measured from resting state network 

extraction. The accuracy of our classification is an indicator 

of the level of association and the features used by the 

classifier reveal the aspects of functional brain connectivity 

most effected from the exposure.  
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2. MATERIALS AND METHODS 

 

2.1 Dataset 

 

The data used in this study is a subset of that measured in an 

ongoing IRB-approved iTAKL study [9] of the effect of 

repetitive sub-concussive head impacts in youth football 

players. During all practices and games, the football player is 

instrumented with the HIT system [6], which uses 

accelerometers mounted inside the helmet to measure skull  

 

 

Figure 1 : Schematic of analysis, feature selection and 

classification 

acceleration and infer impact location. The risk of concussion 

was computed from the combined probability risk function 

calculated for each impact and summed to compute each 

football player’s risk of concussion-weighted cumulative 

exposure (RWECP) for the season [12]. Thirteen players with 

the highest RWE and 13 players with the lowest RWE were 

selected as our heavy and light head impact exposure football 

groups respectively. Thirteen noncontact athlete control are 

also included to further compare group differences. All 

players (ages 9-13) including both non-contact sport controls 

(N=13) and football players (N=26) receive resting-state 

functional magnetic resonance imaging (rs-fMRI) pre- and 

post-season to measure brain health. The rs-fMRI measures 

the BOLD signal from which we can infer neuronal activation 

patterns, intrinsic functional architecture and overall health of 

the brain. The MRI data were acquired on a Siemens 3T 

Scanner. The rs-fMRI scans were acquired with an echo 

planar sequence covering the entire brain (FOV = 224 x 224, 

flip angle = 90, TR = 2 sec, TE = 25 msec) over a 6-minute 

period. The participants are instructed to keep their eyes open 

fixating at a point. The fMRI data was preprocessed using an 

in house developed processing pipeline that includes steps for 

motion correction, spatially smoothing and spatial 

normalization to a common atlas space(MNI) inorder to 

facilitate group ICA, Fig. 1. 

 

2.2 Group ICA and intrinsic network selection 

 

After preprocessing the resting state fMRI, thirty (30) 

independent components were extracted using temporal 

concatenation group spatial ICA was applied to the pre- and 

post-season data from all 39 subjects performed for all 

subjects at once. This entails reshaping all fMRI volumes into 

a row vector, time concatenating all subject data, and data 

reduction using PCA. The components, consist of pairs of a 

group spatial map and a time course, were extracted using 

InfoMax ICA algorithm. Subject specific spatial maps and 

time courses are constructed using back-reconstruction with 

the GIFT toolbox [4][6]. Our overall processing pipeline is 

shown in Fig. 1. We applied group ICA for consistent 

ordering of the components for all subjects. We identified the 

15 components of neurophysiological origin, and discarded 

the noise and artifact components. Representative examples 

including two neurophysiological group components and one 

noise component are shown in Fig. 2. The neurophysiological 

components include: the default mode network (DMN), 

visual medial (VM), visual lateral, fronto-parietal network 

are identified based on their stability across several runs using 

ICASSO, power ratio, and by manual inspection. [2] [11].  

 

 

Figure 2: Mean Group Components, Left: Visual medial, 

Middle: Default Mode Network, Right: Noise (CSF) 
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2.3 Feature construction and classifier training 

We constructed two types of features. For the first type, we 

converted the subject specific time course of each network 

(component) into a power spectrum through power spectral 

decomposition. Such a frequency based feature allows 

comparisons of time based activity patterns across subjects 

when there is no inherent temporal alignment. For the second 

type, we computed the Pearson correlation coefficient 

between pairs of time courses of the networks extracted for 

each subject. These pairwise values were used to populate a 

functional network connectivity (FNC) matrix. Our power 

spectrum feature vector consisted of the power at 129 

frequency bins while our FNC feature vector was comprised 

of 105 features from the upper triangle values of the FNC 

correlation matrix. The feature vectors from the pre-season of 

each subject were calculated and subtracted from the post 

season features for baseline correction. This allowed us to 

focus on changes of the intrinsic network due to a single 

season of football. The power spectra and FNC feature for a 

single subject is shown in Fig. 3. 

    Next we systematically trained multiple classifiers to 

distinguish between the 3 subject groups using each feature 

type. The classifiers included: linear SVM, K-nearest 

neighbors, Adaboost, Gradboost and a Voting classifier (that 

combines all of these) to classify a subject into one three 

groups: controls, light impact exposure and heavy impact 

exposure [10]. We use nested 10-fold cross validation and 

grid search to select the best parameter for each classifier and 

obtain an unbiased estimate of classifier accuracy.  

 

3. RESULTS 

 

Overall, we observe high prediction accuracy separating pairs 

of groups. The linear SVM tended to perform well relative to 

the other classifiers.  

3.1 Classification based on power spectrum 

The delta power spectrum of the DMN provided a 

classification accuracy of 78% between control vs high and 

75% for low vs high groups, shown in Table 1. Using the 

ΔPSD features, the low exposure group was not 

distinguishable from controls; classifier accuracy at near 

chance 50%. The power spectrum of the visual medial (VM) 

network showed similar accuracies for control vs high and 

low vs high: 78% and 68% respectively using linear SVM 

classifier (Table 1). The accuracy of the DMN and visual 

medial power spectrum was robust in classifying high 

exposure players from the other two groups.  
 

3.2 Classification based on FNC 

Using single season change in functional network 

connectivity features (ΔFNC) yielded a somewhat different 

results. In particular, this enabled discrimination between 

control versus low exposure players.  ΔFNC features enabled 

a classification accuracy of 75% for control vs high exposure 

players with Adaboost and 65% for control vs light when 

using linear SVM classifier. The ΔFNC based classification 

accuracies between the groups and the various classifiers are 

shown in Table 1. 

 

 

Figure 3: Power spectra (top) and functional network 

connectivity (bottom) feature for a single subject 

Table 1: Classification accuracies for DMN, visual power 

spectra and functional network connectivity features 
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4. DISCUSSIONS 

 

We hypothesized that there is a discernable difference in the 

activation time course of the resting state networks and their 

connectivity between network. The DMN is implicated in 

memory as it is often found to be tightly correlated with 

hippocampal activity. Our classification results tend to 

support our hypotheses that the DMN and visual networks 

would contain telltale information about brain injury. The 

high classification accuracy using the DMN and VM power 

spectra features demonstrates their ability to capture intrinsic 

network changes of high cumulative head impact exposure 

players with respect to the other two groups. This suggests 

that these features capture tangible differences in brain 

connectivity that uniquely identify high exposure players. We 

also tested the other networks but they did not yield 

classification accuracies above chance. 
     The DMN and VM power spectrum features may contain 

similar information. This would explain the similar classifier 

performance obtained using either alone or both together. The 

FNC features are robust for classifying control subjects 

against the players regardless of exposure levels. This result 

shows the ability of the FNC features of resting state 

networks to capture changes due to playing a contact sport. 

The FNC feature yields results that show a stronger, 

difference between the control group (non-contact sport 

athlete) and the youth football players and a smaller 

difference between the two groups of football players. The 

other networks didn’t show significant accuracies between 

the groups.  

 

5. CONCLUSION 

 

We coupled a model-free, data-driven approach with machine 

learning classification to check for an association between 

intrinsic network connectivity differences between youth 

athletes and their cumulative risk of concussion from 

repeated sub-concussive head impacts. We examined 

whether resting network based features can discriminate the 

youth football players with respect to their cumulative sub 

concussion head impact exposure. Time course power 

spectrum and FNC between the pairs of components from 

group ICA were computed and used to train several 

classifiers using 10-fold cross validation. Power spectra of 

the default mode network and the visual medial network 

provided tangible difference in the network changes and thus, 

robust classification between high exposure and the other 

groups. This, supports the hypothesis that intrinsic network 

changes occur as a result of sub-concussive head impacts. 

Also the improvement of the classification accuracy using the 

ΔPSD from low RWE to high RWE compared with controls 

suggested the difference in injury increases as the level of 

exposure increases which corroborates the increasing white 

matter integrity loss with increasing RWE as shown in [9].  

     We have studied the changes in power spectra density of 

the time courses of the DMN and visual medial networks 

between control and the players group. We have also, studied 

the changes in connectivity between all canonical resting 

state functional networks. The classifier we construct using 

these features predicts well the categories of cumulative head 

impact exposure This result establishes the potential use of 

these features to study changes in the intrinsic network 

connectivity of players with respect to repeated head impacts.  
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