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Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan
diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide
superior information for customized scan planning and other purposes. A practical challenge is to
design the volumetric scout acquisition and processing steps to provide good image quality (at least
good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of
the conventional 2D scout.
Methods: The authors explored various acquisition methods, scan parameters, postprocessing
methods, and reconstruction methods through simulation and cadaver data studies to achieve an
ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength
around the target organ.
Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and
reconstruction strategy provided a similar level of organ segmentation capability as a traditional
240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time,
the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study,
the authors’ pictorial-structures based organ localization algorithm successfully located the major
abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy.
Conclusions: The authors demonstrated that images with a similar degree of segmentation capa-
bility (interpretability) as conventional dose CT scans can be achieved with an ultralow dose
3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these tech-
niques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully
generated a 3D organ localization map. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4921065]
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1. INTRODUCTION

A 2D planning radiograph (referred to as scout, scanogram,
or topogram) is a radiographic scan of a patient prior to a
main diagnostic CT scan. 2D planning radiographs are used to
assess patient centering and for planning the main diagnostic
CT scan. CT vendors use the planning radiograph to adapt
tube current for automatic exposure control techniques based
on a user-specified image quality metric. These radiograph-
based, automatic exposure control techniques are generally

limited to tube current modulation according to geometric
or attenuation asymmetries in the region of scanning. Like
projection radiography, these 2D planning radiographs are
also 2D projections of a 3D body anatomy. Although
some anatomic landmarks such as lungs and bones can be
identified on these planning radiographs, they are insufficient
for accurate delineation or segmentation of most soft tissue
organs or structures (such as liver, spleen, kidneys, and urinary
bladder). The boundaries of these soft tissue organs are often
difficult to identify due to the overlapping nature of tissue
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projected onto a 2D planning radiograph, which can lead
to unnecessary extra padding, high incidence of rescan, and
variability among operators.

Automatic segmentation or extraction of organ boundaries
for heart and lung from the 2D planning radiograph without
user intervention has been explored before1–3 to enhance organ
position, but segmentation of adjacent soft tissue organs has
proven to be very challenging. In this paper, we propose a
3D volumetric preparatory scan, i.e., 3D scout, to segment
target organs for scan planning while delivering radiation dose
similar to a conventional 2D scout. A 3D scout with a full
organ map may enable other applications such as customized
nonsinusoidal mA modulation,4–6 automatic organ avoidance
tube current modulation,6–8 patient centroid estimation with
better accuracy,9 and organ dose reporting.10 A 3D scout and
its associated applications may have several potential benefits
in clinical practice. First, it could provide more accurate
patient information to avoid overscanning, rescanning, and
unnecessary scanning in clinical practice. It could allow
canceling the main exam when enough contraindications
are observed in the 3D scout (metal, foreign object, size,
etc.) to further protect patient from unnecessary radiation.
Second, organ-based scan protocols for cardiology and liver
oncology/dual energy are gaining a lot of attention where
segmented/localized organ information is critical. Region of
interest (ROI) scanning is also gaining interest in academia in
the context of customized protocols for smaller organs such
as the kidneys. Third, it can enable or improve organ dose
modulation protocols, where the tube current of each view
is specifically controlled to reduce the dose to radiosensitive
organs such as the breasts.

The dose from a conventional 2D scout acquisition is
a small fraction of the dose from the main scan, typically
0.4%–2%, depending on the protocol. For example, a typical
shoulder region scan may use 300 mAs integrated tube current
while a 2D scout acquisition is done at 4.5 mAs (or 1.5% of the
main scan). The latter was computed assuming 10 and 80 mA
for the anterior–posterior and lateral views, respectively, and
0.05 s total x-ray exposure time. Our goal is to achieve image
quality sufficient for organ segmentation based on an ultralow
dose 3D scout scan using a dose comparable to a conventional
2D scout scan. Reconstructed images from such a low dose
acquisition may show degradation due to high noise and
image artifacts such as streaks and azimuthal blur depending
on the mode of acquisition, which makes conventional edge
and region based image segmentation methods11,12 yield
low segmentation accuracy.13–15 More advanced model-based
organ segmentation (MBS) methods hold greater potential to
overcome some of these challenges; however, even these can
fail when the noise or streaks are prominent.16–18

In this work, we explored various ultralow dose acquisition,
preprocessing, and reconstruction strategies to reduce the
radiation dose of a 3D scout while maintaining appropriate
image quality to produce a volumetric organ map. To evaluate
each strategy, we first defined a new image quality metric to
reflect organ “segmentability” (i.e., the ability to segment),
rather than using a specific segmentation approach. As a result,
our experiments are largely independent of the specific organ

F. 1. 3D scout acquisition strategy: (a) normal acquisition, (b) pulsed
acquisition, and (c) continuous-exposure acquisition. Gaps between views
illustrate DAS reading while incurring electronic noise.

segmentation algorithm implementation. We focused on the
abdomen region, specifically the liver, which is one of the most
challenging organs due to its shape, complexity, intersubject
variability, and low boundary contrast at its inferior aspect.
Our methodology can also be extended to other regions and
organs.

Second, we simulated each 3D scout acquisition strategy
using CATSIM (Ref. 19) with the anthropomorphic xCAT
phantom.20 For simplicity, we used a third-generation axial
scan mode with eight detector rows, positioned over the liver
region. We used a variety of preprocessing and reconstruction
strategies to generate 3D scout images. Finally, we analyzed
the image quality of various 3D scout strategies visually
and based on organ segmentability and noise metrics. We
also applied the proposed 3D scout strategy to a cadaver
data set scanned at Massachusetts General Hospital (MGH)
and evaluated the performance of a pictorial-structures based,
multiorgan localization algorithm.21,22

2. 3D SCOUT STRATEGY
2.A. Acquisition

To achieve an ultralow dose 3D scout acquisition, radiation
from the x-ray tube can be reduced by using lower tube voltage
(kVp) and lower tube current (mA). Exposure time can also
be minimized to further reduce the dose. We previously
performed a simulation study of sparse-view acquisitions, in
which fewer views are taken during rotation, resulting in a
smaller total exposure time.23

A sparse-view acquisition can be implemented by tube
pulsing, where an x-ray source is turned on and off during
rotation. However, the latest commercial CT scanners do not
support fast pulsed acquisitions due to limitations of the x-ray
generation hardware. Therefore, we propose a continuous-
exposure acquisition where the x-ray source remains on
during rotation but fewer views are acquired per rotation,
as shown in Fig. 1(c). For example, if a normal acquisition
is performed with 600 mA, 1000 views, and 0.5 ms exposure
times per view, then the pulse acquisition of 1% of the
original dose would be done with 60 mA, 100 views, and
0.5 ms exposure times per view. On the other hand, the
continuous-exposure acquisition of 1% of the original dose
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would be done with 6 mA, 100 views, and 5 ms exposure
times, as shown in Fig. 1. The total number of photons
per view shows that the photon noise and electronic noise
would be similar for both pulsed acquisition and continuous-
exposure acquisition since the exposure time is longer in the
continuous-exposure acquisition and the electronic noise per
view is approximately independent of the integration time.
Furthermore, a continuous-exposure acquisition can easily be
implemented in current commercial CT scanners by updating
the control software.

Pulsed acquisitions and continuous-exposure acquisitions
will still produce different artifacts in a 3D scout. A sparse-
view pulsed acquisition with a simple filtered back projection
(FBP) will produce more streaks, which will be exacerbated
for objects with high attenuation. On the other hand, a
sparse-view continuous-exposure acquisition will have more
azimuthal blur than a sparse-view pulsed acquisition. This
will appear as rotational smoothing that increases with the
distance from the rotation axis.

2.B. Preprocessing

The main purpose of a 3D scout is to segment organs for
organ-based CT scan planning, for example, a heart for cardiac
protocols and a liver for liver protocols. Also for other usages
of a 3D scout, such as aggressive mA modulation or patient
centroid estimation, the spatial resolution requirement is much
lower than for diagnostic CT scans. Since the main concern
for a 3D scout acquisition is to minimize the impact of photon
noise and electronic noise at very low integrated tube currents,
i.e., on the order of a few mAs, we proposed to trade-off spatial
resolution for noise performance by smoothing data before
reconstruction. We tested three different approaches. First,
detector cells are merged into larger detector cells, in groups
of 2×2 or 3×3. Second, instead of taking a simple average,
we can compute the trimmed mean of the central 80% of the
sinogram values in each neighborhood. Finally, a 2D Gaussian
smoothing filter can be applied, empirically tuned to match
the noise reduction power of the first (rebinning) method.
For the clinical data processing, we applied only the trimmed
mean filter.

2.C. Reconstruction

A 3D scout is a preparatory scan, which is processed
before the main scan is acquired. Since the patient remains in
the scanner, there is a time constraint on the reconstruction
and processing of the 3D scout. Full model-based iterative
reconstruction approaches have been very successful in
handling ultralow dose and sparse acquisitions,24,25 but can
require long computation times. Other iterative reconstruction
approaches, such as ASIR,26 have high noise reduction
capability and operate in real time without minimal
computing hardware. Rather than focusing on a specific
iterative reconstruction technique, we emulated its impact
by reducing the noise. We used FBP reconstruction with
a commercially available smooth reconstruction kernel and
averaged multiple noise realizations to emulate the impact

of iterative reconstruction. We applied view interpolation to
minimize streak artifacts from the sparse-view nature of the
data.

3. EXPERIMENTS

We designed multiple experiments to evaluate various
3D scout strategies, as summarized in Tables I and II.
Experiment 1 uses an extra high dose, extra low noise
acquisition and was used to establish the ground truth
boundary of a target organ. Experiment 2 uses a standard
diagnostic CT acquisition protocol with normal dose and
noise levels (240 mAs with 120 kVp) and serves as the
baseline. Experiments 3–8 consist of pulsed acquisition
protocols with different levels of sparseness, tube current,
and corresponding dose levels. The lowest-dose experiment
was also preprocessed with detector rebinning (Experiments
9–10), reconstructed with a smoother kernel (Experiment
11), reconstructed with emulated iterative reconstruction
(Experiment 12), and processed with combinations of the
above (Experiments 13–14).

The effect of iterative reconstruction was emulated by
averaging four FBP images from different noise realization
simulations, resulting in about 50% reduction in noise while
maintaining resolution, which is what we would expect from
advanced real-time iterative reconstruction techniques.

Experiments 15–17 have continuous x-ray exposure but
reduce the number of views by increasing the view time. The
dose percentage was computed by dividing the mAs of a given
strategy by 240 mAs, which was the base line of a standard
scan.

In a second series of experiments (Table II), we repeated
the ground truth (Experiment 1) and the baseline (Experiment
2) and we extended the first set of experiments to
include several low dose acquisition protocols with standard
processing (Experiments 3–6). The tube current of the various
continuous-exposure acquisition strategy went down further
from 60 to 7.5 mA while the view exposure time increased
from 0.4 to 3.2 ms while maintaining the same x-ray tube
output (Experiments 4–6).

Experiments 7–10 were further processed with detector
Gaussian blurring. The Gaussian blurring filter was designed
to replicate a 3×3 detector rebinning. In Experiments 11–18,
we replaced the standard filtered backprojection to reconstruct
a sparse-view acquisition (12.5% of standard number of
views) by a linear view interpolation to upsample the data
prior to filtered backprojection.

We simulated all 3D scout acquisition strategies shown in
Tables I and II using CATSIM (Ref. 19) with the anthropomor-
phic xCAT phantom20 including both photon and electronic
noise models, which were validated against a GE VCT scan-
ner. A third-generation axial acquisition mode was used for
simplicity. A total of eight rows of detectors were positioned
over the liver region. The central slice was reconstructed with
a standard 3D filtered backprojection and the proposed vari-
ations, using a voxel size of 1×1×0.625 mm and a field of
view of 360 mm. The size of the xCAT phantom at the liver
level was roughly 300×250 mm.
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T I. Experiment parameters for various acquisition and processing strategies.

Experiment

Tube
current
(mA)

Tube
output
(mAs)

Acquisition
number of

views
Exposure time
per view (ms)

Dose from base
line (%)

Reconstruction
number of

views Note

Ground-truth and baseline
1 2000 800 1000 0.4 333 1000 Ground truth
2 600 240 1000 0.4 100 1000 Base line

Pulsed acquisition—standard processing
3 240 24 250 0.4 10 250 Pulsed acquisition
4 240 12 125 0.4 5 125 Pulsed acquisition
5 120 12 250 0.4 5 250 Pulsed acquisition
6 120 6 125 0.4 2.5 125 Pulsed acquisition
7 60 6 250 0.4 2.5 250 Pulsed acquisition
8 60 3 125 0.4 1.25 125 Pulsed acquisition

Pulsed acquisition—advanced processing
9 60 3 125 0.4 1.25 125 Detector rebinning (2×2)

10 60 3 125 0.4 1.25 125 Detector rebinning (3×3)
11 60 3 125 0.4 1.25 125 Smooth kernel
12 60 3 125 0.4 1.25 125 Real-time iterative reconstruction
13 60 3 125 0.4 1.25 125 Kernel + rebinning (3×3)
14 60 3 125 0.4 1.25 125 Kernel + rebinning (3×3) + iteration

Continuous acquisition—advanced processing
15 60 12 250 0.8 5 250 Kernel + rebinning (3×3) + iteration
16 60 6 125 0.8 2.5 125 Kernel + rebinning (3×3) + iteration
17 60 3 62 0.8 1.25 62 Kernel + rebinning (3×3) + iteration

Finally, the most promising 3D scout strategy from this
simulation study was applied to a cadaver data set acquired
at MGH, Boston, MA. This cadaver was originally scanned
using a helical protocol of 30 mAs and 120 kVp, reporting a

CTDI of 0.9 mGy. We emulated the pulsed sparse acquisition
by dropping 90% of the views to achieve an ultralow dose
3D scout CTDI of 0.09 mGy. These data were processed
with a trimmed mean filter (20% trim) and a quadratic

T II. Experiment parameters for various 3D strategies with continuous-exposure acquisition.

Experiment

Tube
current
(mA)

Tube
output
(mAs)

Acquisition
number of

views

Exposure
time per view

(ms)
Dose from

base line (%)

Reconstruction
number of

views Note

Standard processing techniques
1 2000 800 1000 0.4 333 1000 Ground truth
2 600 240 1000 0.4 100 1000 Base line
3 60 3 125 0.4 1.25 125 Pulsed acquisition
4 30 3 125 0.8 1.25 125 Continuous-exposure acquisition
5 15 3 125 1.6 1.25 125 Continuous-exposure acquisition
6 7.5 3 125 3.2 1.25 125 Continuous-exposure acquisition

Noise reduction techniques
7 60 3 125 0.4 1.25 125 Gaussian detector blur
8 30 3 125 0.8 1.25 125 Gaussian detector blur
9 15 3 125 1.6 1.25 125 Gaussian detector blur

10 7.5 3 125 3.2 1.25 125 Gaussian detector blur
Aliasing reduction techniques

11 60 3 125 0.4 1.25 250 + View interpolation (upsampled to 250)
12 30 3 125 0.8 1.25 250 + View interpolation (upsampled to 250)
13 15 3 125 1.6 1.25 250 + View interpolation (upsampled to 250)
14 7.5 3 125 3.2 1.25 250 + View interpolation (upsampled to 250)
15 60 3 125 0.4 1.25 500 + View interpolation (upsampled to 500)
16 30 3 125 0.8 1.25 500 + View interpolation (upsampled to 500)
17 15 3 125 1.6 1.25 500 + View interpolation (upsampled to 500)
18 7.5 3 125 3.2 1.25 500 + View interpolation (upsampled to 500)
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F. 2. 3D scout with various acquisitions, preprocessing, and reconstruction techniques is shown. Images are from (1) ground truth, (2) standard dose level,
(3)–(8) various low dose level, ranging from 24 to 3 mAs with pulsed acquisition, (9)–(10) 2×2 or 3×3 detector rebinning, (11) smooth FBP kernel, (12)
real-time iterative reconstruction emulation, (13) combination of 3×3 rebinning and smooth kernel, (14) combination of 3×3 rebinning, smooth kernel,
and iterative reconstruction emulation, and (15)–(17) various continuous acquisition protocols with proposed preprocessing techniques. See Table I for
details.

view interpolation and were reconstructed with a standard
helical reconstruction algorithm. A pictorial-structures based
multiorgan localization algorithm21,22 was applied to the fully
processed 3D scout image volume to generate the bounding
box of major organs such as the heart, lungs, liver, and
kidneys.

4. RESULTS AND DISCUSSION

We evaluated the images from the various 3D scout
strategies by visual inspection, based on the image quality
metrics, and by applying an automated organ localization
algorithm. Shown in Fig. 2 are the baselines and various

F. 3. 3D scout with various acquisitions, preprocessing, and reconstruction techniques is shown. Images are from (1) ground truth, (2) standard dose level, (3)
pulse acquisition, (4)–(6) various continuous acquisition protocols with different view exposure times at 3 mAs dose level, (7)–(10) Gaussian blur on (4)–(6)
acquisitions, (11)–(14) view upsampling by two combined with Gaussian blur, and (15)–(18) view upsampling by four combined with Gaussian blur. See Table II
for details.
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F. 4. (a) Noise metric: 2×2 cm rectangular ROI in the liver region with
a dotted line. (b) NES metric: interpolated ground truth contour, c(t), and
perpendicular line segments, s(r ).

3D scout images from various acquisitions, preprocessing,
and reconstruction strategies from Table I. Qualitatively, we
observe that, as the tube current and number of views drop,
images rapidly lose soft tissue contrast and the boundary

of the liver becomes invisible, as shown in Figs. 2(6)–2(8).
Images with a combination of various denoising techniques
resulted in noisy, but more visible organ boundaries. The
images processed with the combination of a 3×3 window
detector rebinning, a smooth reconstruction kernel, and
iterative reconstruction emulation [Experiment 14 in Table I,
shown in Fig. 2(14)] show a well-defined liver boundary
while delivering only a fraction (1.25%) of the dose relative
to the baseline [Experiment 2 in Table I, Fig. 2(2)]. However,
streak artifacts from the pulsed acquisition with a FBP-
based sparse reconstruction are very pronounced, as shown in
Figs. 2(9)–2(14).

Furthermore, we compared Experiment 14 (which has
twice the number of views as Experiment 17) and Experiment
17 (which has twice the exposure time of Experiment 14)
with the same mA level, in order to assess the impact of
having fewer views with longer exposure time. However,
we observed that images reconstructed without a dedicated
sparse-view reconstruction algorithm have very high noise
and invisible organ boundaries, as shown in Fig. 2(17).

F. 5. (a) Noise and (b) NES metrics from cases in Table I are shown in diamonds and the percentage dose from the baseline (Experiment 2) is shown in
squares. The dashed horizontal lines represent noise and NES metric of the reference case, Experiment 2.
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F. 6. (a) Noise and (b) NES metrics from cases in Table II are shown as a solid line. Dashed horizontal lines represent noise and NES metrics of the reference
case, Experiment 2.

Additional 3D scout images from the second set of
experiments of Table II are shown in Fig. 3. The continuous-
exposure acquisitions with varying view exposure times
show similar noise level when the tube output (mAs) was
kept the same [see Figs. 3(4)–3(6)]. Applying a Gaussian
detector blur effectively reduces the noise and enhances the
contrast, but reveals radial streak artifacts due to the sparse
acquisition [see Figs. 3(7)–3(10)]. We applied additional view
interpolation which helped reduce streak artifacts; however,
the azimuthal blur manifested as short arcs in the rotation
direction and nonuniform noise levels. This can be clearly
seen in Figs. 3(11)–3(18), where the central region shows
more noise than the peripheral region.

To further assess the proposed 3D scout strategy, we
devised two image quality metrics for organ segmentability to
compare various 3D scout strategies in this simulation study.
The first metric measures the noise at the interior portion of
the liver using a 2×2 cm rectangular ROI, as shown by the
dotted box in Fig. 4(a).

The organ interior noise, σ, is the standard deviation of
voxel intensities from a ROI in the liver interior,

σ = stdev(rectangular ROI). (1)

The success of organ segmentation from an ultralow dose
3D scout scan is highly dependent on the contrast changes
along the boundary of the organ. High frequency artifacts
such as streaks, increased noise, and blurred boundaries due
to heavy postprocessing can impair the success of organ
segmentation. Therefore, to measure the strength of the
contrast change at the boundary, we propose a new metric,
normalized edge strength (NES), which normalizes existing
edge strength metrics.27 A clearly defined edge will have a
high intensity gradient perpendicular to the boundary and a
low gradient parallel to the boundary. To determine parallel
gradient and perpendicular gradient, we manually extract the
ground truth boundary from the liver in the reconstructed
image of the xCAT phantom using VV 4D slicer.28 This
boundary is represented by a piecewise linear polygonal
curve [shown in Fig. 4(b)]. The intensity profile along the
organ boundary curve, i.e., parallel to the curve, is defined
as c(t) which can be parameterized by t, the arc length
along c.

Medical Physics, Vol. 42, No. 5, May 2015
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F. 7. Organ localization results. Left: Accuracy of the pictorial-structures based organ localization algorithm measured as the mean distance error. Right: As
shown in these three different subjects of varying anatomical proportions, the organ localization algorithm (Ref. 21) produces visually accurate results. The
automatically identified organs include the head, pelvis, spine, heart, lungs, kidneys, liver, and spleen.

To measure the perpendicular gradient, we evenly distribute
7 mm long line segments that straddle and are perpendicular
to the boundary [shown in Fig. 4(b)]. The image intensity
profiles along these line segments are denoted as s(r) in
which r parametrizes the arc length along s. Finally, we
define the NES of a boundary as

NES=
trimmean

(
max���

dsi(r )
dr

���
N
i=1

,5
)

trimmean
(��� dc(t)dt

���

,5
) . (2)

For robustness to outliers, instead of taking an average of all
the computed gradients, we first trimmed the highest and the
lowest 2.5% values. For a vector input v , the trimmean (v,5)
function computes the mean of elements in v , excluding the
highest and lowest 2.5% values.

To quantitatively assess the performance of various 3D
scout strategies, we computed the noise metric and NES
metric for every case in Tables I and II. For the experiments

in Table I, the combination of detector rebinning, smooth
reconstruction kernel, and iterative reconstruction emulation
(Experiment 14) improves the NES and noise performance
and achieves a similar image quality level compared to the
full dose acquisition (Experiment 2), as shown in Fig. 5. The
noise and NES metrics for each strategy are marked with
diamond symbols in Figs. 5(a) and 5(b), respectively, while
the dose percentage relative to the baseline (Experiment 2) is
marked with square markers.

The horizontal lines represent image quality metric values
from the baseline case (Experiment 2).

For the additional experiments in Table II in which
the tube outputs are equal for every strategy (3 mAs or
1.25% of the baseline tube output), the combination of
Gaussian blur in projection domain and 500 view upsampling
through interpolation (Experiments 15–18) provides the most
improvement in the noise and NES metrics, shown in
Fig. 6(b). Note that the level of improvement is on par

F. 8. Reconstructed images and organ localization. (a) Coronal slice from original cadaver data acquired at 0.9 mGy, (b) 0.09 mGy equivalent version of the
same slice after noise reduction, and (c) located organ bounding boxes, including lungs in red and green.
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with the experiments from Table I, but do not use iterative
reconstruction emulation. Noise and NES metrics are marked
with triangle markers in Figs. 6(a) and 6(b), respectively. The
dashed horizontal lines indicate the baseline (Experiment 2).

Finally, to evaluate our proposed 3D scout acquisition and
analysis approach, we applied a simulation study to the clinical
data acquired at MGH, Boston, MA. In this study, we begin
by applying a pictorial-structures based multiorgan, machine
learning-based localization algorithm.21,22 We trained the
method with more than 30 subjects of low resolution CT data
from a PET/CT/MR trimodality imaging study at University
Hospital Zurich, Switzerland, which has a similar image
quality to the processed 3D scout. The accuracy of the
organ localization algorithm was measured by the unsigned,
perpendicular planar distance error in mm between the ground
truth locations of the organs’ bounding box sides and their
detected locations. The mean distance error ranged from 10
to 20 mm, as shown in Fig. 7, which is adequate for the scan
planning and organ-based mA modulation application. The
trained organ localizer was then applied to the fully processed
3D scout image volumes from the cadaver data sets to generate
the 3D organ bounding boxes. Examples of organ bounding
box localization results for the heart, lungs, liver, and kidneys
are shown in Fig. 8. The reconstructed coronal slice of the
original data acquired at 0.9 mGy is shown in Fig. 8(a). We
further dropped 90% of views and applied trimmed mean
filter and view interpolation, shown in Fig. 8(b). Finally, we
extracted the bounding boxes of heart, lungs, liver, kidneys,
and pelvis, shown in Fig. 8(c). Since the standard CTDI for
chest-abdomen-pelvis protocol is 10–15 mGy, the proposed
3D scout strategy successfully demonstrates segmentability
at less than 1% of the dose relative to the baseline protocol.
Currently, the accuracy of the bounding box is ∼10–20 mm
depending on the organ21 and further segmentation of the
organ from the initial bounding box solution will further
improve accuracy.2,3

5. CONCLUSION

We investigated the feasibility of acquiring an ultralow
dose 3D scout and providing sufficient image quality to
generate 3D volumetric organ localizations for subsequent
scan planning. We achieved low dose by reducing tube voltage
and tube current while acquiring sparse views and maintaining
the total number of x-ray photons per view using sparse-
view, either pulsed or continuous-exposure acquisitions. We
also proposed additional reconstruction and postprocessing
approaches to improve the image quality. We defined two
image quality metrics to measure the edge strength at the
boundary and noise level inside of organs. In our study we
applied this to the liver to compare the “segmentability”
of images produced by various acquisition and processing
methods. In a simulation study, we successfully demonstrated
that the 3D scout delivers a similar degree of organ localization
capability as a regular 240 mAs diagnostic scan while
delivering only 1.25% of the radiation dose. Furthermore,
we demonstrated the potential for the proposed 3D scout

strategy on real clinical data and produced a reasonable
3D volumetric organ map with clinically relevant organs.
In the future, we will demonstrate the preferred mode
for a 3D scout acquisition in a clinical system and we
will optimize preprocessing and reconstruction techniques
to balance the azimuthal blur from view interpolation
and streaks from sparse-view FBP reconstruction. Finally,
we will investigate and quantify the benefit of the 3D
scout in multiple scan planning and exposure control
applications.6
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