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Abstract. Parsing 2D radiographs into anatomical regions is a chal-
lenging task with many applications. In the clinic, scans routinely include
anterior-posterior (AP) and lateral (LAT) view radiographs. Since these
orthogonal views provide complementary anatomic information, an inte-
grated analysis can afford the greatest localization accuracy. To solve this
integration we propose automatic landmark candidate detection, pruned
by a learned geometric consensus detector model and refined by fitting
a hierarchical active appearance organ model (H-AAM). Our main con-
tribution is twofold. First, we propose a probabilistic joint consensus
detection model which learns how landmarks in either or both views pre-
dict landmark locations in a given view. Second, we refine landmarks
by fitting a joint H-AAM that learns how landmark arrangement and
image appearance can help predict across views. This increases accuracy
and robustness to anatomic variation. All steps require just seconds to
compute and compared to processing the scouts separately, joint process-
ing reduces mean landmark distance error from 27.3 mm to 15.7 mm in
LAT view and from 12.7 mm to 11.2 mm in the AP view. The errors are
comparable to human expert inter-observer variability and suitable for
clinical applications such as personalized scan planning for dose reduc-
tion. We assess our method using a database of scout CT scans from 93
subjects with widely varying pathology.
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1 Introduction

Many medical imaging protocols rely on 2-D radiographs for patient specific
organ localization, which facilitates a variety of clinical applications including
scanner set-up and scan planning, precise organ segmentation, semantic naviga-
tion and structured image search. Manual organ localization can be time con-
suming, impede workflow and often suffers from large operator errors. Automatic
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Fig. 1. Image analysis challenges and proposed solution. (a–d) Image paris consist of
AP (left) and LAT (right) views. (e) Our method consists of two steps: joint landmark
set detection followed by joint H-AAM organ localization.

localization from 2-D radiographs is therefore urgently needed. In this paper, we
enable the automatic parsing of 2D radiographs from ubiquitous clinical CT
scans. Such scans routinely include both a 2D anterior-posterior (AP) scout and
a lateral (LAT) projection scout image. Automatic organ localization from 2-D
scout images is a very challenging task due to low image quality from high noise
level and low image contrast. Furthermore, scout images are 2-D projections of
three dimensional data and as such have greatly reduced image information due
to significant tissue overlap compared to volumetric scans. Representative 2D
scout images are shown in Fig. 1a–d.

We hypothesize that an image analysis method combining information from
AP and LAT views will afford the greatest localization accuracy. Our proposed
solution (Fig. 1e) has two steps. First a set of landmarks delineating the bound-
aries of salient organs is extracted from the image pair though a joint consensus
detector which removes outliers from the set of landmark candidates detected
on AP and LAT views. This organ localization is further refined by fitting a
hierarchical active appearance organ model (H-AAM) to the image pair.

Previous methods using landmark detection to parse radiographs include
[5,8]. In [8] false negatives are not inferred nor are the detections refined with a
joint H-AAM which we show substantially improve accuracy. In [5] the landmark
detection uses only a single AP-only model and does not handle LAT images. It
is essential to process both scouts because their orthogonal views provide com-
plementary organ location information. Parsing 3D CT volumes using landmark
detection has been presented [6], where the landmark detections are refined by
searching exemplar cross-correlation maps. Active shape model (ASM) [3] and
active appearance model (AAM) [1] have also been reported to combine with
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landmark detection approach. In [7], an active shape model based refinement was
applied after landmark detections. In [2], the shape model fitting is driven by a
random forest regression voting. Neither of these methods directly applies to soft
tissue localization in radiographs. This is because the projective image formation
causes multiple structures to overlap making direct application of ASMs error
prone and because the non-Hounsfield pixel intensities make cross-correlation
maps problematic.

2 Methods

Our method (Fig. 1e) consists of two steps: (1) joint landmark set consensus
detection for an initial organ localization, (2) refinement by joint H-AAM fitting.
The following sections describe each step.

2.1 Joint Landmark Set Detection

Joint landmark set detection consist of two substeps. We begin with the input
which consists of a pair of 2D scout images, one for the AP scout, denoted
IAP , and one for the LAT scout, ILAT (Fig. 2a). These are processed separately
using an individual “sliding-window” patch detector for each landmark. One
set of detectors searches IAP and outputs a set of candidate landmark locations
CAP , while another set searches ILAT and outputs candidate locations CLAT .
Detectors are run in parallel. In general, the output candidate sets contain false
positives and negatives. Both are corrected by applying a joint landmark set
consensus detector in Fig. 2a (box 3). This employs a greedy approach that
iteratively removes the least likely candidate, considering the set of candidates
recovered from both views and the probabilistic anatomy (landmark constella-
tion) model. The result after consensus detection is a consistent N -labeling of
the N landmarks for each subject. These N labels consist of landmarks for the
AP scout, LAP,1, and for the LAT scout LLAT,1.

Training and Applying Landmark Detectors. Each individual landmark
detector is trained as a two-category rejection cascade classifier [9], Fig. 2e, using
supervised learning. Each cascade stage is a Gentle Adaboost [4] classifier.

To train we need positive landmark patches and negative patches. Positives
come from cropping a rectangular patch around each manually annotated land-
mark. As illustrated in Fig. 2b we manually label 21 AP landmarks including:
heart-diaphragm intersection (1, 11), diaphragm peak (2), lung corners (3, 19),
left most in left lung (15), lung sides at 1/3 and 2/3 the arc length to top (4,
5, 18, 17), top of lungs (6, 16), airway-lung intersections (7, 13), heart top (14),
heart sides (8, 12) at 1/2 arc length to top, ends of diaphragm near heart (9, 10),
lower rib cage beneath lungs (20, 21). As shown in Fig. 2c we use 13 LAT land-
marks: ends of diaphragm (1, 13), spine-diaphragm intersection (2), top of lung
(5), lung side (3, 12) at 2/3 the arc length to top, posterior of spine (4) at 2/3 the
arc length to lung top, heart top (6), heart side (7), heart-diaphragm intersection
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Fig. 2. Joint landmark set detection. (a) Landmark detectors scan input images pro-
ducing landmark candidates; then a joint consensus detector corrects false positives and
negatives. (b, c) Detectors are trained from positive and negative landmark patches
dropped from images with manually labeled landmarks on lung and heart boundaries.
(d) Haar image features (e) Rejection cascade based detectors.

(8), bottom of heart (9), right most of heart (10), heart side (11) at 2/3 the arc
length bottom to top. These landmarks delineate lung and heart boundaries.
The positive exemplars for each landmark are image patches large enough to
include visible anatomical structure around the landmark. Negative exemplars
are randomly cropped from the image that overlap the positive by <40%. Haar
image features (Fig. 2d) are computed efficiently using integral images [9]. Each
cascade stage is trained to achieve a true positive rate of 99.7 % with a false pos-
itive rate of 50 % and stages are added until a desired overall true/false positive
rate is reached or a maximum number of stages (15) is achieved.

Joint Landmark Set Consensus Detector. Applying the landmark detec-
tors yields a set of candidate detections, C = CAP ∪CLAT . There can be multiple
detections per landmark (false positives) and landmarks that were not detected
but are present (false negatives). To correct for both cases we use a consensus
detector to remove the false positives and infer the false negatives. There are
two phases of consensus detection: training and application of the trained model
which are described next.

Phase 1, Training : Training learns a probabilistic model of the global geomet-
ric arrangement of the landmarks in the N -landmark constellation. Given the
manually labeled N -landmark set for each pair of training images, then for each
target landmark i, and for each pair of voting landmarks from the remaining
N -1, we learn the multivariate Gaussian distribution of the relative position of i
to the location of the pair. Each distribution encodes the probability the target
landmark i is at any location in the image plane, conditioned on the location of
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the voting pair. Specifically, denoting the N -landmark set as L = LAP ∪ LLAT ,
and the pair of distinct voting landmarks as si ⊂ L, we learn the parameters,
μi and Σi of the multi-variate Gaussian distribution for each target landmark,
q ∈ L and q �∈ si using maximum likelihood estimation (MLE).

To formulate the optimization, we begin by letting the coordinates of the AP
image be (x, z); those of LAT image be (y, z). We use linear regression to model
the dependency of the target landmark q’s coordinates on the location of the
two voting landmarks in si. The target’s coordinates are (x3, z3) if from the AP
image and (y3, z3) if from the LAT image. The voting landmarks can both be
from the AP, both from the LAT or one from each. All possible cases of target
and voting landmarks are modeled using Eqs. (1)–(6):

x3 = α0 + α1x1 + α2z1 + α3x2 + α4z2 z3 = β0 + β1x1 + β2z1 + β3x2 + β4z2 (1)
x3 = α0 + α1x1 + α2z1 + α3y2 + α4z2 z3 = β0 + β1x1 + β2z1 + β3y2 + β4z2 (2)
x3 = α0 + α1y1 + α2z1 + α3y2 + α4z2 z3 = β0 + β1y1 + β2z1 + β3y2 + β4z2 (3)
y3 = α0 + α1y1 + α2z1 + α3y2 + α4z2 z3 = β0 + β1y1 + β2z1 + β3y2 + β4z2 (4)
y3 = α0 + α1y1 + α2z1 + α3x2 + α4z2 z3 = β0 + β1y1 + β2z1 + β3x2 + β4z2 (5)
y3 = α0 + α1x1 + α2z1 + α3x2 + α4z2 z3 = β0 + β1x1 + β2z1 + β3x2 + β4z2 (6)

Using the voting pair si, we model the probability that the target is at any
location x in the kth training image as a multivariate Gaussian:

pk(x) =
1

√
2π|Σki|

e− 1
2 (x−μki)

T Σ−1
ki (x−μki).

The unknown coefficients from the appropriate pair of linear regression equations
(1)–(6) can be used to form a projection matrix:

Ai =

⎛

⎜⎜⎜⎜
⎝

α0 β0

α1 β1

α2 β2

α3 β3

α4 β4

⎞

⎟⎟⎟⎟
⎠

(7)

Similarly, given K total training LAT/AP image pairs, the coordinates of the
voting landmarks can be expressed compactly as P s (where x becomes x or y
depending on AP or LAT) and the target coordinates as P t using:

P s =

⎛

⎜⎜⎜
⎝

1 x11 z11 x21 z21
1 x12 z12 x22 z23
...

...
...

...
...

1 x1k z1k x2k z2k

⎞

⎟⎟⎟
⎠

(8)

P t =
(

x1 x2 ... xk

z1 z2 ... zk

)
(9)



Organ Localization Using Joint AP/LAT View 143

We compute the projection matrix via MLE using Ai = (P T
s P s)−1(P tP s)T .

Then the mean and covariance parameterizing the Gaussian are computed from:
μi = P sAi and Σi = cov(P T

t − μi). Note that even if the AP and LAT scans
are not aligned well our method still works well because our model learns the
distribution of AP/LAT misalignments.

Phase 2, application of the trained model : First we iteratively prune false pos-
itives, similar to [7,8]. At each iteration we remove the candidate least likely
to be valid. Candidate likelihood is the maximum probability of the candidate,
computed from the Gaussian distributions given its relative position to all other
pairs of landmark candidates. Lowest probability candidate is removed if its
probability is <τ , an empirically determined threshold. Iterations stop when the
lowest probability >τ .

Next we infer the location of false negative landmarks, which is unique to
our method and not found in [7,8]. Given C our set of candidate detections,
we let P be the set of landmarks spanned by C. The undetected landmarks are
U = L \ P . For each undetected landmark u ∈ U , we infer its location, x, using
predictions from the detected candidates. We compute a location estimate for
each subset ck ⊂ P of two candidates of distinct landmarks, using the mean
offset, μ, from ck learned in our training dataset. This forms a set of estimates,
E = {en} where en = (xn, zn) for AP image. Our final estimate of en is formed
from the trimmed mean of the central 50 % over all estimates in E.

2.2 Joint H-AAM Organ Localization

Joint H-AAM. Like the consensus detector, the active appearance model
(AAM) is also a generative learning-based approach. Trained on labelled image
data, the model learn both relative positions between different parts of the object
and the expected textures inside the ROI. By incorporating both shape and
appearance information, AAM-based interpretation leads to a robust solution
even in the presence of serious image noise and large structure variation.

In this work, a joint H-AAM approach is introduced, encoding shape and
appearance information from both AP and LAT views. Furthermore, a hier-
archical pyramid is employed. At the coarse level, a single global joint model
is trained on the manually-labelled radiographs of AP and LAT views. All
landmarks used to train joint consensus detectors are included in the model.
There are 21 landmarks in training image IAP of AP scout and 13 landmarks
in ILAT of LAT scout. Through concatenation the shape of the training image
pair is represented by a 34 dimensional vector v = [LAP , LLAT ]T , where LAP =
[xAP

1 , zAP
1 , · · · , xAP

21 , zAP
21 ] is the set of 2D coordinates of landmarks in IAP and

LLAT = [yLAT
1 , zLAT

1 , ..., yLAT
13 , zLAT

13 ] is the set for ILAT . To obtain the asso-
ciated appearance information, we construct two triangulated meshes based on
these landmarks, one on AP view and one on LAT view (see Fig. 3a). The region
inside the mesh is taken as the ROI. A global AAM model is then trained from
the v and the ROI of the training images, which encodes the intensity texture
from both AP and LAT scouts. Figure 3(b and c) show the constructed mean
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Fig. 3. (a) Triangulated meshes from manually-annotated landmarks give rough loca-
tions of lungs (green, blue, orange) and heart (red). (b) Mean joint shape model. (c)
Mean joint appearance model. (d) Mean shape and appearance AP sub-model. (e)
Joint H-AAM fitting workflow (Color figure online).

shape and the mean appearance of the joint model, respectively. The joint global
model captures the probabilistic correlation between structures in both views,
which helps infer obscured shapes from other parts and is less sensitive to ini-
tialization errors though less flexible than two individual scout models.

In subsequent finer levels of the pyramid, sub-models are trained using scout
specific vertices from the global model, allowing better description of local struc-
tures and reducing the chance of over-constrained by learning variations in a
single view. Figure 3d shows the constructed AP only sub-model. The following
section shows how hierarchical model fitting helps localize organs in AP and
LAT views.

Hierarchical Model Fitting. Our model fitting workflow is illustrated in
Fig. 3e. Initialized to landmark consensus detection results, a joint model incor-
porating feature points from both AP and LAT scout images is simultaneously
fitted to the AP/LAT image pair (Fig. 3e, box 4). Next the localization result
on the AP image is refined by applying a sub-model learned from AP images,
which is initialized by previous joint model fitting results (Fig. 3e, box 5). We
only apply the sub-model for AP scouts because in practice, AP images have
more reliable features since the projection image is formed from less tissue over-
lap than LAT images. Since LAT images have greater structure occlusion more
constraints are required to infer organ locations. To further refine LAT loca-
tions, we fit a joint model again, during which we leave the AP landmarks fixed.
These points serve as reliable “anchor” points, enforcing contextual constraints
for LAT landmark refinement.
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3 Experiments and Results

We evaluate our approach on 93 subjects from whom both AP and LAT scout
images were acquired using four-fold cross validation, i.e. 70 subjects for training
and the remainder for testing in each fold. The image size ranges from 888 × 660
pixels to 888 × 1026 pixels for AP scout, and 888 × 660 pixels to 888 × 935 pixels
for LAT scout. The resolution is 0.60 × 0.55 mm for both scouts. The subjects
vary in age, gender, and pathology including obesity (Fig. 1b), lung cancer, and
cardiomyopathy. Additional variability includes metallic implants: cardiac stents,
hip implants, and jewelry (Fig. 1a, c). Acquisition protocol variations include large
variation in the Z range and patient positioning, e.g. arm position (Fig. 1a, d).

Qualitative Evaluation. In Fig. 4a, we compare landmark detection results
using separate consensus detection, (top), with those from joint consensus detec-
tion, (bottom). True landmarks are shown in dark blue X’s, those detected by
the method are shown as green and yellow X’s, while those inferred using these
detections are light blue. Differences are highlighted in yellow; the detection and
the corresponding true location are enclosed by a yellow ellipse. We observe these
ellipses are much smaller using joint consensus detection than separate detection,
indicating higher landmark accuracy. In further analysis we found that every LAT
landmark has improved mean accuracy. Figure 4b–d show comparative organ local-
ization results. The fitting results are shown in cyan dashes with right lung (green),
left lung (blue), chest cavity (orange) and heart (red). The ground-truth is marked
by yellow dash. We observe the joint model yields significant improvement (Fig. 4c)
over the single view processing (Fig. 4b) and is further improved by enforcing a
joint hierarchical model fitting structure (Fig. 4d).

Quantitative Evaluation. The mean landmark distance error between com-
puted andmanually labelled landmarks across all 93 test images is shown inFig. 5a.
Compared to separate view consensus detection, our proposed joint view approach
reduces distance error from 12.7 mm to 11.2 mm for AP view and from 27.3 mm
to 15.7 mm for LAT view. Joint consensus detection without AAM fitting main-
tains AP landmarks at 22.3 mm while dramatically reducing error (by >14 mm)
for LAT view from 32.0 mm to 17.3 mm. Joint hierarchical AAM reduces overall
distance error for AP and LAT, including from 14.0 mm to 11.2 mm for AP and
from 17.3 mm to 15.7 mm for LAT compared to joint model fitting only.

A potential application of our method is to determine the bounding box of the
heart for cardiac scan range planning. To evaluate method suitability we compare
the smallest rectangle containing all landmarks along the heart boundary to
heart bounding boxes manually defined by physicians. The unsigned distance
errors of the box sides are shown in Fig. 5b–c. Our method improves bottom and
all four sides in AP and LAT scouts respectively. Improvement of the bottom
side is particularly noteworthy given the high organ occlusion there.

Processing the images at full resolution, landmark detection and joint con-
sensus detection takes about 25 s while joint H-AAM requires about 30 s with a
modern desktop computer (4–8 core, 8 GB RAM). Further speedup is achievable
through multi-resolution processing.
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Fig. 4. Impact of joint AP/LAT view processing. (a) Separate detection results (top)
have larger landmark errors than joint consensus detection (bottom) for landmarks
(red #). (b)–(d) Each step in which we fit our AAM model (shown with red, blue,
green, cyan lines) improves fidelity to ground-truth (yellow dash). Compare fitting
improvements (purple arrows) among (b) single view AAM; (c) joint view AAM and
(d) joint H-AAM (Color figure online).

Fig. 5. Cross-validation results from 93 subjects. Proposed joint AP/LAT view app-
roach achieves lowest distance error (a) and heart bounding-box distance error (b, c).

4 Discussion and Conclusions

In this work we address the challenging task of parsing AP and LAT radiographs
into salient anatomic structures. To the best of our knowledge, this work is the
first to jointly leverage information from AP and LAT scouts to delineate the
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heart and lungs. We demonstrate that fitting a coarser initial joint hierarchical
AAM across AP/LAT views reliably refines the consensus landmark detection
results. Further, finer single-view-only models can be subsequently applied for a
final round of refinement. Using joint landmark detection and joint H-AAM fit-
ting reduces mean distance error in LAT landmarks from 27.3 to 15.7 mm. This
is an improvement of over 40 percent compared to using only LAT scout scans,
where features are inherently more difficult to localize due to greater overlap of
structures. Lastly, compared to separate view processing, our joint view approach
reduces overall mean landmark distance error from 12.7 mm to 11.2 mm in the
AP view and from 27.3 mm to 15.7 mm in LAT view. For the AP scout our error
of 11.2 mm compares well to the mean human expert inter-observer variability
of 10.2 mm while our error for the LAT scout of 15.7 mm compares to the human
inter-observer error of 14.3 mm. These inter observer errors were computed using
manual landmark estimates obtained from two independent observers. Our algo-
rithm achieves a level of accuracy sufficient to enable clinically relevant tasks
such as reducing radiation for the patient through personalized scan planning
and to facilitate consistent longitudinal scanning in the clinic, and such clinical
productization has already begun.
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