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Reproducible neuroimaging 
features for diagnosis of autism 
spectrum disorder with machine 
learning
Cooper J. Mellema1,2, Kevin P. Nguyen1,2, Alex Treacher1 & Albert Montillo1,2,3,4*

Autism spectrum disorder (ASD) is the fourth most common neurodevelopmental disorder, with 
a prevalence of 1 in 160 children. Accurate diagnosis relies on experts, but such individuals are 
scarce. This has led to increasing interest in the development of machine learning (ML) models that 
can integrate neuroimaging features from functional and structural MRI (fMRI and sMRI) to help 
reveal central nervous system alterations characteristic of ASD. We optimized and compared the 
performance of 12 of the most popular and powerful ML models. Each was separately trained using 15 
different combinations of fMRI and sMRI features and optimized with an unbiased model search. Deep 
learning models predicted ASD with the highest diagnostic accuracy and generalized well to other MRI 
datasets. Our model achieves state-of-the-art 80% area under the ROC curve (AUROC) in diagnosis 
on test data from the IMPAC dataset; and 86% and 79% AUROC on the external ABIDE I and ABIDE II 
datasets (with further improvement to 93% and 90% after supervised domain adaptation). The highest 
performing models identified reproducible putative biomarkers for accurate ASD diagnosis in accord 
with known ASD markers as well as novel cerebellar biomarkers. Such reproducibility lends credence 
to their tremendous potential for defining and using a set of truly generalizable ASD biomarkers that 
will advance scientific understanding of neuronal changes in ASD.

Autism spectrum disorder (ASD) is currently diagnosed through a time-consuming evaluation of behavioral 
tests by expert clinicians specializing in neurodevelopmental disorders. This diagnosis can be challenging due to 
several factors including the heterogeneity of the spectrum disorder, the uncertainty in the administration and 
interpretation of behavioral tests, and neurobiological and phenotypical differences that vary only slightly com-
pared to typically developing  controls1. These differences are believed to be due to altered neural connectivity in 
participants with ASD, but the nature of these differences remains unclear. A standardized and accurate diagnos-
tic tool would increase availability and reproducibility of diagnostic services while reducing subjectivity, as well 
as elucidate which neuronal changes are most characteristic of ASD versus typically developing  individuals1–3. 
As candidate noninvasive measures to facilitate diagnosis, functional MRI (fMRI) and structural MRI (sMRI) 
quantify brain connectivity and 3-dimensional structure, respectively. The blood oxygen level dependent (BOLD) 
signal from fMRI measures changes in flow and the ratio of oxy/deoxyhemoglobin in the blood throughout 
the brain; an indirect measure of neural activity. As ASD is putatively a neural connectivity disorder, regional 
signals can then be converted to interregional functional connectivity measures (FC). Structural MRI enables 
the quantification of complementary measures of brain morphology such as cortical thickness and subcortical 
structure volume. Furthermore, accurate diagnostic models built from anatomical and connectivity biomarkers 
will allow us to characterize neuroanatomical and functional alterations most characteristic of ASD.

A clinician’s diagnosis of ASD is nuanced, differential and complex. First, a clinician not only considers 
the presence of certain features or their absence but also considers all possible reasons that may explain those 
features: whether they are indicative of one condition or another, whether they are due to a condition or simply 
a delayed developmental milestone. Second, the clinician considers developmental trajectories rather than a 
single instant in time. Third, a clinician considers the prevalence of the condition, carefully adjusting specificity 
and sensitivity requirements.
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A machine learning diagnostic tool does not supplant these crucial steps to the diagnostic process, but instead 
augments them by providing additional information. For example, an ASD diagnostic tool could calculate that 
ASD is a likely diagnosis due to observed atypical connections and atypical structure in a set of neuroanatomi-
cal regions. Such a tool can reveal where each individual lies in a nuanced symptomatology space, highlighting 
the connections and structure leading to its prediction. This information can then be combined by the clinician 
with other observations for a final diagnosis. Thus, an accurate neuroimaging-based diagnostic tool informs 
clinical decisions and enables better interpretation of observed symptoms in terms of underling neurobiologi-
cal alterations.

Previous researchers’ attempts to automate diagnosis and characterize biomarkers through neuroimaging 
based machine learning are limited in three ways. First, they typically focus on one proposed predictive model 
and do not equally optimize or tune the hyperparameters of alternative methods, leading to biased results. 
Second, once a model is generated, they do not thoroughly analyze the model to reveal the learned biomarkers 
or discuss the neurophysiological significance of the findings. Third, they do not validate or adapt their models 
to an external dataset and are thereby prone to a spurious result applicable only to the single dataset used for 
model construction.

We conducted a systematic comparison of linear, nonlinear, and deep learning ML models and assessed their 
relative performances using a large ASD dataset. Hyperparameters of each model were carefully optimized to a 
similar degree to avoid preferentially biasing the results. The resulting optimized models identified consensus 
brain regions important for ASD diagnosis reproducible across all models. Abnormal functional connectivity 
(FC) was identified in previously underreported connections to and from the cerebellum and supplementary 
motor cortex. Furthermore, we characterized the granularity of brain parcellation and feature-set combinations 
using atlases at differing resolutions to highlight detectable differences in neuroimaging for accurate diagnoses 
of ASD. Our top performing models match the leading performance in the existing literature, but with an added 
advantage of lower complexity. This, in turn, makes them more interpretable, less susceptible to overfitting train-
ing data, and have a greater ability to generalize to new datasets, which we demonstrate. The generalizability 
to new data, cross-model consensus, and unbiased optimization all support the validity and robustness of the 
identified novel connectivity biomarkers. Trustworthy, stable biomarkers validated across multiple models and 
datasets advance our core neurobiological understanding of ASD and further the promise of machine learning 
as both a diagnostic tool and means of biomarker discovery.

Results
The primary results of this study stem from the analysis of 915 participants from the IMPAC dataset who received 
both sMRI and resting state functional MRI (rsfMRI)3. This study focused on the comparison of two-category 
classifiers that predict the diagnosis: ASD or Typically Developing (TD). The IMPAC dataset includes an expert 
clinical diagnosis (the classifier target) for which there were 418 ASD patients and 497 participants designated 
as TD.

Model performance. The results of our hyperparameter model search across 15 different feature sets and 
12 different model types analyzed are summarized in Fig. 1. The feature sets (columns of Fig. 1) consisted of 7 
different functional brain-atlas parcellations measuring brain connectivity from fMRI, and these were used with 
or without additional measures of volumetry from T1 MPRAGE MRI. For each of the model types: DL, Classi-
cal Linear, and Classical Nonlinear (rows of Fig. 1) there were 50 hyperparameter configurations evaluated per 
model by feature set combination. Each numeric entry of Fig. 1. is the area under the ROC curve (AUROC) of 
for the machine learning model predicting ASD vs TD on the held-out test data not used during model train-
ing using the hyperparameter configuration that had the highest average AUROC across the folds of threefold 
cross-validation.

Impact of machine learning model. The choice of machine learning model category (classical linear, classical 
nonlinear, and deep learning) had a profound effect on model performance (rows of Fig.  1). Deep learning 
models tended to outperform classical linear models, which in turn tended to outperform classical nonlinear 
models. The performance of the deep learning models is shown in the bottom 3 rows of Fig. 1. The most success-
ful deep learning algorithms were the dense feedforward neural network (DFNN) and long short-term memory 
network (LSTM), with maximum AUROC of 80.4% and 79.0%, which outperformed classical ML methods. The 
BrainNetCNN does not handle anatomical features, however on the functional features alone it performed lower 
than the other deep learning models and similar to the linear models. The deep learning methods performed 
best when using the combination of functional and anatomical features. The highest overall performance was 
a DFNN, whose architecture is described in Table 1, right column, using the rsfMRI connectivity data with the 
BASC atlas with 122 regions-of-interest (ROIs) and the sMRI volumetric data combined, achieving an AUROC 
of 80.4% on the held-out test set.

Among the linear classical machine learning algorithms, the SVM with a linear kernel and the logistic regres-
sion with ridge regularization achieved an AUROC of 70.4% and 69.4% respectively. Among the nonlinear 
classical machine learning algorithms, the SVM with a Gaussian kernel attained a maximum AUROC of 70.5%. 
The least successful methods were models from the nonlinear classical model category and include the random 
forest and extremely randomized trees with a maximum AUROC of 60.8% and 60.9%. Both adaptive boosting 
and gradient boosting performed better than the random forest models, but overall did not perform as well as 
the linear methods.

The deep learning models identified non-linear combinations of the functional connectivity and anatomical 
features which maximize diagnostic accuracy, and that accuracy reached an AUROC of 80% in close agreement 
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Figure 1.  Performance of classifiers predicting the diagnosis of ASD versus TD. Performance is measured as 
the area under the ROC curve (AUROC) on held-out test data from IMPAC. Greener colors and larger boxes 
indicate higher performance. Note that BrainNetCNN can only be applied to fMRI data. Rows indicate the 
type of machine learning model used while columns indicate the feature set (volumetry, connectivity based 
on a brain-atlas parcellation, or both) and the atlas parcellation name. Models were further broken into linear, 
nonlinear, and deep learning methods. Features were grouped into anatomical, functional, and combined 
anatomical and functional features. See “Methods” for further detail. DK Desikan–Killiany atlas, Ex. Rand 
Trees extremely random trees, SVM (Gaussian) support vector machine with a Gaussian kernel, SVM (linear) 
SVM with linear kernel, lasso reg. logistic regression with L1 penalization, ridge reg. logistic regression with 
L2 regularization, Dense FNN dense feedforward neural network, LSTM RNN bidirectional long short term 
memory recurrent neural network, BrainNet CNN BrainNet convolutional  network63,64.

Table 1.  Examples of DFNN network architectures tested in the random search. Hyperparameters shown 
include the regularization coefficient, number of layers, number of neurons per layer, and dropout fraction. 
Left column illustrates a simple network with fewer and smaller layers. Middle shows a complex network with 
more, larger layers. Right column shows the architecture of the highest performing network.

Simple dense network Complex dense network Highest performing dense network

L2 Regularization: 2.3e−4 L2 Regularization: 2.3e−4 L2 Regularization: 1.1e−4

Dense: 16 neurons Dense: 128 neurons Dense: 64 neurons

Dropout: 53% removed Dropout: 18% removed Dropout: 13% removed

Dense: 16 neurons Dense: 128 neurons Dense: 64 neurons

Decision Layer: 1 neuron Dropout: 18% removed Decision Layer: 1 neuron

Dense: 64 neurons

Dropout: 18% removed

Dense: 42 neurons

Decision Layer: 1 neuron
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with other recent works which require access to whole images. For a confirmatory diagnostic test, high specific-
ity is desirable. With 80% specificity, we achieved a sensitivity of 70% with our top model which is approaching 
clinical utility (see Supplementary Table S1 for thorough characterization).

Impact of feature set. Upon comparison of the 15 feature sets (columns of Fig. 1), we showed that the models 
trained with only anatomical features (first column) yielded the lowest prediction accuracy. For models trained 
with functional connectivity data columns (columns 2–8), the BASC atlas and the Power atlas generated models 
with higher predictive accuracy than other atlases. However, the models trained using a combination of anatom-
ical and functional features (columns 9–15) attained even higher performance, suggesting the information in the 
functional and anatomical features is complementary. The top performing models combined the anatomical and 
connectivity features from the Power atlas, Craddock atlas, or BASC atlas. The best performance was achieved 
with the BASC  atlas4 compared to the other atlases tested. These models achieved 75.4–80.4% AUROC on the 
held-out test data. This atlas’ coarsest resolution contains 64 ROIs (Fig. 2A), its medium-grained granularity has 
122 ROIS (Fig. 2B), while its fine-grained granularity has 197 ROIs (Fig. 2C), and the highest diagnostic predic-
tion performance was achieved at medium granularity.

Lone functional features performed higher than structural features, suggesting greater information contained 
therein. In general, however, combining anatomical features with functional connectivity features tended to 
improve model performance across all model categories, suggesting structural–functional complementarity. 
This finding corroborates previous  studies5–11. The relatively higher performance of the 122- and 197-ROI BASC 
atlases suggests the optimal granularity of neuroimaging-detectable changes in functional connectivity in ASD. 
It also indicates that the k-means clustering approach from which the BASC atlas is derived may be more suited 
to accurately elucidate functional connectivity changes in ASD than other parcellation methods based on ana-
tomical structures.

Important features. As described in “Identifying important and reproducible features”, the top 15 features 
were ranked by their median feature importance over the top 5 DFNN models for each BASC atlas (ROI) granu-
larity. These features are shown in Fig. 3. The feature importance for the connectivity features are reported as the 
number of standard deviations from the mean feature importance, i.e., a z-score normalized importance. The 
most important features for the ASD vs TD prediction for the model trained with 64 ROIs is shown in Fig. 3A, 
while Fig. 3B,C shows the most important features for the models trained from 122 and 197 ROIs, respectively. 
Color-coded functional labeling of features is shown to facilitate comparison. Motor, sensory, and language areas 
appear throughout the top features, while no structural features (cortical thickness, volume, etc.) were among 
the top 15 most discriminative features. Further, whether the connection is significantly increased in ASD (+), 
decreased in ASD (−), or not significantly different from TD (o) is also indicated, as determined by an independ-
ent t test between the ASD and TD sub-cohorts in the study with significance threshold p ≤ 0.05. The clinical and 
demographic features, specifically sex and imaging site, were found to be of high importance only in the 197-
ROI model incorporating fMRI and sMRI and models trained on sMRI data alone (not pictured). Additional 
visualizations of the most important connections in brain space are shown in Supplementary Fig. S1.

Across the different atlas granularities, altered functional connectivity (FC) was found between multiple pairs 
of brain regions. The Somatosensory cortex tended to have altered connectivity (increased and decreased FC) to 
regions around the brain while the anterior and posterior cerebellum had decreased FC to deep cortical structures 
and increased FC to more superficial structures. Meanwhile the frontal cortex tended to have a complex pattern of 
FC changes, striatal structures exhibited decreased connectivity with other regions, and language associated cor-
tex was found to have a complex pattern of FC changes as well. The default mode network (DMN) encompassed 
several of these regions, and intra DMN connectivity was significantly altered in ASD vs TD subjects (Fig. 3). 
These patterns of connectivity were found to be reproducible for ASD classification across the atlas granularities 
examined (Fig. 3). Overall, motor associated features were most often predictive of ASD, relative to the other 
types of features examined. Features recurring at multiple resolutions bolsters confidence in their importance 
and suggests that even higher granularity may be warranted to further elucidate biological underpinnings.

Model search analysis. Performance of a diagnostic model on a given problem can depend substantially 
on the choice of architecture. In order to examine the effect of the choice of hyperparameters, kernel density 

Figure 2.  Levels of granularity tested from the BASC atlas. (A) Coarse-grained with 64 ROIs, (B) medium-
grained with 122 ROIs, (C) Fine-grained with 197  ROIs62,64.
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Figure 3.  Important features learned by top performing models for ASD diagnosis at each level of BASC 
atlas (ROI) granularity with coarse-grained atlas (A), medium-grained (B), and fine-grained (C). Each feature 
captures the functional connectivity between two brain regions and is given a distinct color based on the 
function of the region pair. Connections between sensorimotor ROIs are shown in blue, while connections 
between language ROIs are in red. Connections between regions that are neither motor nor language are in 
yellow. A connection between language (red) and motor (blue) ROIs is shown with an intermediate hue (i.e. 
purple) and similarly for other region function combinations. For each important feature, an independent 
sample two tailed t test testing for a difference in that feature amongst ASD subjects vs. TD subjects was 
performed. Those that were found to be significant at p ≤ 0.05 were additionally marked as increased in ASD 
(+) and hashed lighter or decreased in ASD (−) and hashed darker. Those connections that were found not to 
be significantly different in ASD vs. TD were marked with a (o) and are presumed to be important features only 
in a multivariate combination with other features. The corresponding p-values (FDR corrected at 0.01) for the 
calculated PFI of the median model are significant for all displayed features. This indicates the importances are 
greater than what would be found by chance due to the random permutations in the PFI approach alone. For 
each feature, if all 5 of the interrogated models had a z-scored importance ≥ 3, the median feature is marked with 
a red star, if four had a z-scored importance ≥ 3, the median feature is marked with a black  diamond63,64.
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estimates were computed to estimate the probability distribution functions of the configurations of the highest 
performing (top 20%) configurations and lowest performing (bottom 20%) configurations (Fig. 4). As the peaks 
of the high (blue) and low (orange) performing models are not proximal and the AUROC varied by 20% or more 
between high and low performing models, this suggests that architectural hyperparameters impact performance 
substantially. Also, the configurations of the top performing models, i.e. at the peaks in the blue surfaces, occur 
near the centers of the search ranges and not near the edges of the search space, which confirms that the search 
ranges used have adequate coverage to discover high-performing configurations. As an additional test, predic-
tive model ensembles combining multiple higher-performing configurations were generated, however these did 
not further improve prediction performance (Supplementary Fig. S2 and Table S2).

The hyperparameter search analysis revealed that the highest performing models tended to use between 2 and 
4 hidden layers with 16–64 neurons per layer when using the coarse atlas (Fig. 4A), 2 layers with 16–32 neurons 
versus 3 layers with 128 neurons for the medium-grained atlas (Fig. 4B), and 3–4 layers with 16 neurons versus 
2 layers with 256 neurons for the fine-grained atlas (Fig. 4C). There was a preference in high performing models 
for more layers with increasing granularity and a preference for fewer neurons/layer with increasing granularity. 
Models trained on a greater number of features (more granular atlases) tended to perform best with a deeper 
yet more narrow architecture. Such an architecture would facilitate suppression of spurious features through 
the narrower ‘information bottleneck’ design, yet still enable the integration of informative features in complex 
ways through greater architectural depth.

External validation. To test whether the top machine learning models trained with IMPAC captured gen-
eralizable predictive abstractions, these models were applied without adaptation to two large external datasets 
(ABIDE I and ABIDE II) not used during model training. Results of this external validation are shown for the 
ABIDE I and II datasets in Table 2. The top single model trained using IMPAC attained 80.4% AUROC on 
IMPAC held-out test data. When tested on ABIDE I, it achieved an AUROC of 86.0% (Table 2 underlined) and 
when tested on the ABIDE II it achieved a performance of 79.2%. These results are very similar to the results 
attained on the original IMPAC dataset, demonstrating the generalizability of the models and important features 
identified. A full characterization of other high performing models in this study and their sensitivity–specificity 
characteristics is presented in Supplementary Table S1.

The top performing models on the IMPAC dataset were also tuned to the ABIDE datasets with supervised 
domain  adaptation12. Tenfold cross validation wherein the models were trained with early stopping on 10% of 
the data. Testing on the remaining 90% was then performed and the mean performance and standard deviation 
of these tuned models is reported in Supplementary Table S3. These tuned models achieved AUROC as high as 
93.2% on ABIDE-I and 90.5% on ABIDE-II, roughly a 4–9 basis point increase in performance relative to models 
without any adaptation. Permutation feature importance (PFI)13 was performed on one fold of the tuned models, 
in the same fashion as on the IMPAC dataset. The tuned feature importances at an edge level were reasonably 

Figure 4.  Kernel Density Estimates from the DFNN hyperparameter search reveals the density of highest 
performing configurations (top 20%) shown in blue, and low performing configurations (lowest 20%) in orange. 
Densities of DFNN configurations using the coarse BASC atlas (A), medium atlas (B), and fine atlas (C). Peaks 
of blue surfaces are marked with *63,64.

Table 2.  Model performance ranges (AUROC) of the top performing IMPAC models on ABIDE I and II. 
Highest AUROC of both individual models and highest average AUROC across the top five models are bolded.

Atlas

Top 5 models from IMPAC

Mean ± std1 2 3 4 5

ABIDE I

BASC (64 ROIs) 82.3 66.3 83.9 78.9 81.6 78.6 ± 6.4

BASC (122 ROIs) 86.0 87.1 88.0 88.0 87.4 87.3 ± 0.7

BASC (197 ROIs) 82.1 88.5 87.4 85.9 87.7 86.3 ± 2.3

ABIDE II

BASC (64 ROIs) 74.0 64.0 77.4 73.1 74.2 72.5 ± 4.5

BASC (122 ROIs) 79.2 80.8 80.7 80.9 81.4 80.6 ± 0.7

BASC (197 ROIs) 76.0 82.6 82.7 79.2 82.3 80.6 ± 2.6
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similar to the initial features with a mean Pearson’s R between significant edges in the pre and post tuned model 
of 0.50 and a Spearman’s R of 0.47 (significance being > 3 standard deviations from mean feature importance). 
Even higher concordance would most likely be observed when analyzed at a functional level (e.g. Fig. 3) rather 
than an individual edge level. Additionally, we observed higher accuracy on ABIDE-I relative to IMPAC and 
this may reflect better ASD vs TD separation in its cohort, however, a detailed analysis into the separability of 
severity of ASD per database is limited due to the binary nature (ASD vs TD) of the diagnosis in IMPAC. It could 
also be due to other cohort differences, such as sex, which are associated with diagnosis. Specifically, ABIDE 
and IMPAC have substantially different proportions of male vs. female subpopulations (Table 3, 50% male in 
IMPAC vs 85 or 80% male in ABIDE).

Discussion
Constructing high performing models. The results of this study yield insight into appropriate mecha-
nisms for the construction of models to inform clinical diagnosis of Autism. The model and atlas characteristics 
analyzed, when taken as a whole, provide guidance and context for the selection of modeling parameters and 
features when constructing ASD diagnostic models. First, comparison of model types reveals that deep learn-
ing provides additional predictive power over classical machine learning methods, even when using engineered 
image-based features. Second, the subset of atlases that performed better is informative for ASD diagnosis. Inter-
mediate granularity atlases generated with functional clustering performed best. Third, the results confirm that 
changes in ASD are reflected more by changes in functional connectivity than by changes in volume and cortical 
thickness. The results here provide an equitable comparison to guide future neuroimaging experimental design 
decisions.

The adoption of a full diagnostic model in the clinic will depend on the performance of such a model on 
suspected cases that may have similar-appearing disorders; such as ADD or Bipolar disorder. However, this 
research provides a model with high diagnostic performance relative to other reports, and comprehensively 
characterizes functional changes to provide a possible mechanistic explanation of the differences between ASD 
and typically developing. This represents a significant step towards both an independent diagnostic model and 
towards a more thorough understanding of the underlying neurophysiology of ASD.

Reproducible features. The interrogated models demonstrate important features that are reproducible 
across different atlas granularities, the top 5 models within a single granularity, cortical functional types, and 
with previously published literature. The broad consensus across these domains underscores the credibility of 
identified biomarkers.

Changes observed in the connectivity between regions in ASD include those at the coarse 64 ROI resolution, 
where we observed a predominance of decreased connectivity in sensorimotor areas in the identified features. 
Furthermore, we saw prominent involvement of deeper brain structures such as the cingulate, thalamus, and 
insula. At the finer resolution of 122 ROIs, we saw a slight shift of the predominantly important features, further 
involving regions of association cortex and a greater number of features with increased FC in ASD versus TD 
compared to the coarse resolution. Notably, these features are more reproducible than at any other granular-
ity, with feature importances greater than three standard deviations away from the mean in all 5 models or 4/5 
models for all of the top 15 median features across the 5 models. This consistency across models bolsters con-
fidence in the 122-ROI models’ features. The features include diverse areas of the brain, but more alterations in 
FC between regions and the frontal cortex specifically are observed. Finally, at the finest resolution of 197 ROIs, 
we saw many of the same features as at the coarser resolution, with further implication of association cortex 
and somatomotor regions. The 197-ROI models did not exhibit a predominance of increased or decreased FC 
features, unlike the coarser resolutions. Further, at this finest resolution, prolific involvement of deep cortical 
structures was observed.

Multiple cortical functional networks associated with symptomatology of ASD are implicated at every resolu-
tion. The language cortex, corresponding to observed communication differences; the somatosensory process-
ing cortex, corresponding to repetitive behaviors and sensory processing differences; and the social association 
cortices, linked with social interaction were all observed to have altered connectivity across the models and 
resolutions  observed1,14–18. We saw the most FC alterations in both somatomotor and association cortex, with 
fewer language-associated areas implicated.

Many of the features identified by the proposed top performing models agree with alterations reported previ-
ously, including the significantly altered DMN  connectivity15,18,19, connectivity in visual  areas14,17,19,20, motor and 
supplementary motor  connectivity14, connectivity in somatosensory association  areas16,17, and connectivity in 
the prefrontal  cortex15,16,18 in individuals with ASD.

Table 3.  Demographics of IMPAC participants, ABIDE I participants, and ABIDE II participants. Errors 
shown are standard deviations.

IMPAC ABIDE I ABIDE II

Female % 50 15 20

ASD % 46 48 52

Age (years) 17 ± 9.6 17 ± 8.1 17 ± 11

Total participants 915 1045 761
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Importantly, our analysis has better characterized underreported connectivity changes. We showed the FC to 
and from the cerebellum, including both the anterior and posterior aspects, are important diagnostic predictors 
of Autism. Cerebellar dysfunction has long been implicated in  autism21–23, but not, to our knowledge, charac-
terized in the multivariate context of machine learning diagnostic models. Moreover, these cerebellar features 
are important across all levels of granularity examined (from the BASC atlas at 64, 122, and 197 ROIs). These 
reproducible discriminatory connections lie between the cerebellum and motor areas as well as between the 
cerebellum and frontal cortex, regions that pertain to sensory processing and social behavior, putatively altered 
in ASD. This altered cerebellar connectivity in ASD has received little attention in the fMRI literature, as the 
cerebellum is often not included in functional analyses. We suggest that these connections are areas worthy of 
further investigation and that all fMRI studies of ASD should especially consider the cerebellum.

Comparison to previous work. This study identified and measured consensus neuroimaging features that 
were reproducible across processing methods, models, and multiple large datasets. The findings also reproduced 
previous results from the literature. Improved reproducibility and confidence in experimental results is funda-
mentally important in the neuroimage analysis community. To maximize reproducibility, it has been shown 
that performing multiple analyses on the same data and building a consensus from the aggregate results is more 
reliable than any given single  model24. For example, when an fMRI model is fit to 212 subjects, the confidence 
bounds on the estimated performance and held-out test performance are large: greater than ± 15%. The confi-
dence interval follows a binomial law and drops precipitously to ± 2% when the number of subjects is increased 
towards 1000  subjects25. Due to the small effect sizes observed in fMRI studies, the use of multiple datasets and 
analysis techniques is  paramount26.

Previous research has analyzed the  IMPAC3 and  ABIDE1,2 datasets as well as additional proprietary datasets. 
This work compares favorably to the top 10 submissions from the IMPAC challenge. The majority of those 
methods were ensembles of linear models, achieving an average of 0.79 ± 0.01  AUROC27. We additionally report 
AUROC on the external ABIDE I and ABIDE II datasets, confirming that the models generalize (80% AUROC 
on IMPAC, 86% AUROC on ABIDE I, and 79% AUROC on ABIDE II). There is a scarcity of reported results 
demonstrating that models trained generalize to other datasets. Our study reports binary accuracy of 75% on 
the held-out test set. When we trained on IMPAC data and tested the model on ABIDE I and II, our model’s 
test accuracy is comparable to models trained directly on ABIDE data. For example, models using training data 
sampled across all ABIDE sites report test accuracies ranging from 64 to 68%28,29, while those holding out whole 
 sites8,27,30 report test accuracies from 72 to 80%.

Furthermore, often results on the ABIDE dataset report accuracy on the same validation data used to optimize 
model hyperparameters, rather than separate test data, which tends to overestimate classifier  performance25. 
These previous reports include those using classical machine learning, typically  ensembles5,9,11,30–37 with valida-
tion accuracy from 65 to 83%, and those using deep  learning9,33,37–40 with validation accuracy 70–85%. Finally, 
previous research analyzing proprietary  datasets9,10 achieve validation accuracy of 78–92%. In contrast to this 
prior work that use private inaccessible data or proprietary modeling, this work employs large publicly available 
datasets and the code is publicly available through our source-code repository (see “Data availability”). Such 
steps foster greater potential for external reproducibility and verification.

In summary, this study addresses gaps in the aforementioned research: First, we perform extensive quantita-
tive comparison across multiple model types and atlas granularity, where most studies analyze only a small subset 
of models and atlases. Second, we verify model performance on a large, public, external dataset and demonstrate 
generalizability, which to our knowledge, has not been done before. Third, we report test performance on both the 
IMPAC and ABIDE datasets because validation accuracy overestimates model performance. Finally, since there 
is little discussion of the reproducibility of important features across models, across atlases, and atlas granularity, 
we report those features which are consistently important.

Limitations and future directions. While our study significantly advances the development of machine 
learning tools for automated accurate ASD diagnoses, it has potential for improvement. The model is dependent 
upon the input dataset, and the IMPAC dataset has only binary diagnosis. However, ASD is known to be a spec-
trum disorder. Training data that includes a finer characterization of ASD symptomatology would help hone the 
accuracy and enable a fuller characterization of the disorder. Additionally, our analysis used only one anatomical 
parcellation and one measure of functional connectivity, but additional structural atlases and functional connec-
tivity measures could be further explored. Finally, data that includes measures of electroencephalography (EEG) 
and magnetoencephalography (MEG) which directly measure brain activity albeit at lower special resolution 
than fMRI would complement our analyses. Future studies to explore the character of ASD as a spectrum, inte-
grate additional functional and anatomical measures, and explore different timescale resolutions would further 
advance our understanding.

Conclusion
This study systematically compares 12 of the most powerful and commonly deployed ML models, develops a high 
performing ASD diagnostic model that can be readily adapted to new datasets, and characterizes the important 
and reproducible features learned by the models. Predictive features learned by the models confirm previously 
reported putative biomarkers and place new importance upon the understudied in-vivo connectivity between 
the cerebellum and the supplementary motor and frontal cortices. The identification of optimal brain parcella-
tion granularity and feature-set combinations can be used to further guide model development, develop clinical 
diagnostics, and improve ASD diagnosis and timeliness of care. The identified putative biomarkers may help 
to elucidate pathophysiology, direct treatment options, and even target psychosocial interventions. Building 
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evidence and confidence in identified neurophysiologic correlates of autism will benefit the community and 
individuals affected.

Methods
Materials and ethics statement. This study uses the 915 participants of the IMPAC dataset that received 
both sMRI and resting state functional MRI (rsfMRI)3. This dataset includes an expert clinical diagnosis (the 
classifier target) for which there were 418 ASD patients and 497 participants designated as TD. Demographic 
data including participant age and sex were collected (Table 3). To test whether the machine learning models 
trained with the IMPAC dataset captured discriminative features that generalize to other data, two external ASD 
datasets with sMRI and rsfMRI were used, ABIDE  I1 and ABIDE  II2. Demographics for the participants used 
from ABIDE I and ABIDE II are shown in Table 3. Participants from all sites of the ABIDE I and ABIDE II were 
included for external validation, provided both sMRI and rsfMRI were obtained on the same visit. The first avail-
able pair of sMRI and rsfMRI scans were used per subject. 1045 subjects from ABIDE I and 761 subjects from 
ABIDE II met this criteria.

The IMPAC data used for the analysis in this study were anonymized with no protected health information 
included and was approved by the ethics committees of the Institut Pasteur, Robert Debre Hospital, Paris-Saclay 
Center for Data Science, and Ingenieurs et Scientifiques de  France3. The ADNI data used for analysis in this study 
were anonymized with no protected health information included in accordance with NIH guidelines and HIPPA 
guidelines and conform to the ethics standards set in the 1000 Functional Connectomes Project and  INDI1,2. All 
data was gathered with informed consent from all participants.

MRI feature extraction. The IMPAC fMRI and sMRI were processed using the fconn1000  pipeline41. For 
the fMRI connectivity features, the TSE connectivity metric was fit on either the training data alone (IMPAC 
models) or the entire IMPAC dataset (ABIDE 1 and 2 datasets), and the TSE values per-ROI timeseries for the 
ABIDE dataset were calculated. Identical structural and functional features were derived as described above for 
the IMPAC study using FreeSurfer volumetry and tangent space embedding between mean regional timeseries 
(with the originally calculated IMPAC embedding)  respectively42,43. The features were standard scaled by the 
mean and standard deviation of the IMPAC dataset. Further details of the preprocessing are provided in Sup-
plementary Sect. 1.1.

A schematic of the feature extraction procedure is provided in Fig. 5. As there is no atlas which is optimum 
for every prediction task, multiple independent atlas parcellations were used. From the rsfMRI, functional con-
nectivity matrices were derived as illustrated in Fig. 5A,B. The rsfMRI was first parcellated into regions of interest 
(ROIs) using seven different atlases. The first three atlases (1–3) are variations of the BASC atlas. This regions of 
this atlas are defined by k-means clustering of stable coherent  groups4 and 3 atlas granularity levels are tested with 
64, 122, and 197 ROIs. The fourth atlas is the Craddock atlas, which defines 249 ROIs by coherence of local graph 
 connectivity44. The fifth atlas is the Harvard–Oxford Anatomical atlas, which defines 69 ROIs using anatomical 
features. The sixth atlas is the MSDL atlas, which has 39 ROIs defined by correlations of spontaneous  activity43. 
The seventh atlas is the Power  atlas45, which divides the brain into 264 ROIs based on local graph-connectivity. 
The mean rsfMRI time signals from each ROI were converted into a connectivity matrix by projection into tan-
gent space, which better captures subject-specific variations from one or more groups than correlation  alone46. 
Tangent space embedding (TSE) has independently been shown to be more efficacious than other FC measures 
such as partial correlation or correlation in the IMPAC  challenge27.

Figure 5.  Combinations of derived features used by the predictive models evaluated in this study. (A) The 
rsfMRI was transformed into a symmetric connectivity matrix for each atlas. (B) Upper triangular elements of 
matrix were flattened into a 1D vector. (C) The sMRI was transformed into a vector of cortical and subcortical 
ROI volumes and cortical thickness features. Different combinations of fMRI and sMRI features were compared: 
In (D) the connectivity matrix vector is used as the sole input for the predictive model, in (E) both anatomical 
and connectivity derived feature vectors are concatenated and used, while in (F) the anatomical features are used 
as the sole input for the predictive  model62,64.
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From the sMRI, 207 features were extracted with Freesurfer 6.0, including volumes of 68 cortical and 37 
subcortical structures, as well as regional cortical thickness and area for the ROIs defined by the Desikan–Kil-
liany gyral  atlas47. The extraction of this anatomical feature vector is schematized in Fig. 5C. Then, models were 
fit using either the structural features (Fig. 5D), functional features (Fig. 5F) or both (Fig. 5E).

Data partitioning. IMPAC participants were randomly partitioned with 80% assigned to a training set and 
20% to a test set with the splits having matching proportions of diagnosis (ASD/TD) and sex (male/female). The 
test participants were set aside and not used during training or model selection. The training set was further split 
into validation and training folds using a threefold stratified cross validation approach. To ensure fair subsequent 
model comparison, the same splits were used for all tested machine learning models.

The machine learning models. Systematic testing of a broad array of 12 machine learning classifiers was 
conducted. These models were chosen to span statistical complexity and to be representative of models with 
evidence of high performance in previous ASD studies. We used 3 linear classical ML models with lower statis-
tical  complexity9,28,32,35,36,48, 6 non-linear classic ML methods of moderate statistical  complexity8,10,11,28,31,34,36,48, 
and 3 deep learning approaches with higher statistical  complexity28,30,39,40,48,49. These models are listed with their 
hyperparameters in Table 4. Classical models were constructed using the Scikit-learn and XGBoost packages, 
while the deep learning models were implemented with Keras, Tensorflow, and Caffe  packages50–54. The LSTM 
classifier uses a dense neural network atop a bidirectional LSTM for classification as  in55. This has been shown to 
yield high prediction performance even on non-sequential fixed vector  data56. The graph-convolutional network 
classifier, BrainNetCNN, was trained using just the FC  matrix57.

Training the models. Each of our 12 model types was trained on 15 different feature sets, for a total of 
180 model type by feature set combinations. The feature sets contain measures of anatomical volume and func-
tional connectivity from the IMPAC dataset. These feature sets included: (1–7) functional connectivity meas-
ured between regions defined by one of the 7 atlases described in “MRI feature extraction” (using the processing 
steps in Fig. 5A,B,D), (8) an anatomical feature set consisting of 207 measures of regional volume and thickness 
(Fig.  5C,F), (9–15) the union of the anatomical feature set with one of the functional feature sets (Fig. 5A–
C,E). All feature sets also included sex and imaging site as additional covariates. The deep learning models were 
trained on an NVIDIA Tesla p100. Further description of the training of the deep learning models can be found 
in Supplementary Sect. 1.2.

Optimizing model hyperparameters and model selection. In order to achieve good performance, 
model parameters (i.e. weights) must fit the training data and model hyperparameters that govern overall charac-
teristics, such as neural network architecture or regularization terms in a regression model, need to be selected. 
In this study, to ensure fairness across model types, the random search algorithm was employed to provide an 
unbiased tuning of model hyperparameters, rather than manually tuning which is biased to the developer’s 
level of expertise. A random search has been found to be more effective than a grid search across a wide variety 
of model types and inputs due to more samples being taken across highly important  hyperparameters58. The 
dimensions and ranges of the hyperparameters searched for each model are listed in Table 4. For each model, 50 
configurations were randomly drawn from the hyperparameter space. To further ensure fairness, the same data 
partitioning splits were used for the threefold cross-validation partitioning of the training set. threefold cross-
validation was chosen over more folds for several reasons: First, the focus of our study is a comparison of the 

Table 4.  Hyperparameter ranges for each machine learning model. Abbreviation definitions (in order of 
appearance from left to right): ML machine learning, learn rate learning rate, subsamp. subsampling per 
tree, cols/tree columns per tree, max iter. maximum iterations, SVM support vector machine, SVM-Gaussian 
SVM with Gaussian radial basis function kernel, SVM-Linear SVM with linear kernel, Log. Regression logistic 
regression, lasso lasso regression with L1 penalization, ridge ridge regression with L2 regularization, DFNN 
deep feedforward neural network, LSTM bidirectional long short term memory neural network, BrainNet CNN 
BrainNet convolutional  network52, ReLU leaky slope rectified linear activation unit slope for x < 0.

Naïve Bayes Random forest Extremely random trees Adaptive boosting Gradient boosting SVM-Gaussian

Nonlinear classical ML NA estimators [50,5e3]
max nodes [5,50]

estimators [50,5e3]
max nodes [5,50]

estimators [50,5e3]
learn rate [0.1, 0.9]

estimators [50,5e3]
learning rate [5,50]
max depth [1,10]
subsamp. [0.2, 0.8]
cols/tree [0.2, 1]

C [1e−4, 1e5]
max iter. [1e4, 1e5]
gamma [1e−2, 1e2]

SVM-linear Log. regression (Lasso) Log. regression (Ridge)

Linear classical ML C [1e−4, 1e5]
max iter. [1e4, 1e5]

C [1e−4, 1e4]
max iter. [1e4, 1e5]

C [1e−4, 1e4]
max iter. [1e4, 1e5]

DFNN LSTM BrainNet CNN

Deep learning
hidden layers [1,3]
initial width [16, 256]
dropout fraction [0.1, 0.6]
L2 penalty [1e−4, 2e−2]

hidden layers [1,3]
initial width [16, 256]
dropout fraction [0.1, 0.6]
L2 penalty [1e−4, 2e−2]

hidden layers [0, 2]
initial width [16,64]
dropout fraction [0.1, 0.6]
ReLU leaky slope [0.1, 0.5]
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relative performances of models, therefore we favored estimates with low variance in exchange for slightly higher 
bias that comes from using the larger, albeit fewer, folds. Minimizing variance increases stability in the cross-
method comparison. Second, it makes our performance estimates conservative, helping to avoid overestimates of 
clinical performance, and increase reproducibility. Finally, from a practical standpoint, we are trained thousands 
of models (over 8500 models) in our analysis, and more folds would have drastically increased training time. 
For each model category, the highest performing configuration was selected by mean AUROC across the cross-
validation folds. The model using this configuration was then trained on all training data and evaluated on the 
held-out test set, not used in training.

Identifying important and reproducible features. In order to better understand which features were 
reproducible in the diagnostic ASD/TD prediction, multiple top performing models were further analyzed. In 
this study, the top model category ranked according to validation AUROC was the DFNN. Its best performing 
model configurations were trained on the BASC atlas, whose rankings are detailed in “Model performance”. 
Because they had the highest performance across multiple scales, these models and scales were the subject of 
further analysis and interrogation to determine their learned features. In particular, for each BASC scale, the top 
5 models per BASC atlas parcellation granularity were identified and the top 15 features were ranked by their 
median feature importance over the top 5 DFNN models (Fig. 3).

The importance of each feature for each of these models was computed using permutation feature impor-
tance (PFI)13. PFI was chosen because it can be applied uniformly to all of the model feature type combinations 
tested. In this approach, for a given trained model, each feature is individually permuted across all participants to 
ablate any predictive information present. Its feature importance, I, is calculated as the z-score normalized mean 
decrease in AUROC: I = AUROCb − AUROCa, between the performance before feature permutation (AUROCb) 
minus the performance after feature permutation (AUROCa). This was averaged over 64 random permutation 
repetitions. The distribution of calculated importances across the permutations in the median model was com-
pared with a one-tailed t test to a null distribution of feature importance created following the procedure  in59. 
The corresponding p-value was then FDR corrected at a rate of 1% with the Benjamini–Yekutieli  procedure60. 
This tests if the importances are greater than what would be found by chance due to the random permutations 
in the PFI approach alone and if the number of permutations was sufficient to find important features. To aid 
in the comparison of IMPAC connectivity features to the scientific literature, which often reports results in 
Brodmann areas (BA), the centroid of each ROI of each atlas was calculated and matched to the corresponding 
 BA61. The ROI–ROI connection can then be re-written as the closest BA–BA connection and the corresponding 
functions compared.

Model search analysis. A hyperparameter search generates a wealth of information. To obtain insights 
from this information, kernel density estimates were computed for the models with the top 20% of performance 
and for the models with the lowest 20% of performance across the 3 BASC atlas resolutions (3 of the highest per-
forming atlases) to identify regions of hyperparameter space that tended to distinguish high performing models 
from low performing ones, as shown in Fig. 4.

External validation. Any given model may overfit to spurious information in training data, not capturing 
the most biologically relevant information, but fitting to noise. A true biomarker should not only be identifi-
able in multiple models fitted to the same data, but also be predictive when used in an entirely new dataset. To 
test whether the machine learning models trained with the IMPAC dataset have truly captured discriminative 
features, we use external datasets (ABIDE I and ABIDE II) not used during model training and hyperparameter 
optimization. Each of the top 5 DFNN models which used the combined structural features and functional fea-
tures from the BASC atlas at three resolutions (64, 122, and 197 ROIs) was applied without adaptation directly to 
the connectivity and anatomical features derived from the external datasets, ABIDE I and ABIDE II.

Data availability
To facilitate reuse and extension, we are pleased to provide full analysis source code, saved models, and pipeline 
parameters at: https:// git. biohpc. swmed. edu/ s1696 82/ Autis mProj ect. The pipelines used are the open-source 
fconn-1000 pipeline whose specific version used in the IMPAC challenge is located here: https:// github. com/ 
ramp- kits/ autism/ tree/ master/ prepr ocess ing3,39. Datasets used for analysis during the study are available in 
the IMPAC repository (https:// paris- saclay- cds. github. io/ autism_ chall enge/), and ABIDE I and II repositories 
(https://fcon_1000.projects.nitrc.org/indi/abide/)1–3. The matplotlib, seaborn, and nilearn python libraries were 
used for figure  generation62–64.
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