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Abstract. Advancing the knowledge about neural speech mechanisms
is critical for developing next-generation, faster brain computer interface
to assist in speech communication for the patients with severe neurolog-
ical conditions (e.g., locked-in syndrome). Among current neuroimaging
techniques, Magnetoencephalography (MEG) provides direct representa-
tion for the large-scale neural dynamics of underlying cognitive processes
based on its optimal spatiotemporal resolution. However, the MEG mea-
sured neural signals are smaller in magnitude compared to the back-
ground noise and hence, MEG usually suffers from a low signal-to-noise
ratio (SNR) at the single-trial level. To overcome this limitation, it is
common to record many trials of the same event-task and use the time-
locked average signal for analysis, which can be very time consuming. In
this study, we investigated the effect of the number of MEG recording tri-
als required for speech decoding using a machine learning algorithm. We
used a wavelet filter for generating the denoised neural features to train
an Artificial Neural Network (ANN) for speech decoding. We found that
wavelet based denoising increased the SNR of the neural signal prior to
analysis and facilitated accurate speech decoding performance using as
few as 40 single-trials. This study may open up the possibility of limiting
MEG trials for other task evoked studies as well.
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1 Introduction

Speech is an important inherent attribute of the humans for effective commu-
nication. Speech centers of the brain along with speech articulators function
synergistically to produce speech. Epochs of air, originating from the lungs,
with the help of pulmonary pressure are excited using the vocal cords at specif-
ically designed frequencies, passed through the vocal tract to the oral cavity,
modulated through various articulators such as the tongue, lips, and jaw and
then are radiated as ‘speech’ from the mouth. Similarly, the speech centers of
the brain include Wernicke’s area: responsible for language recognition; Broca’s
area: responsible for constructing the sentence structure of speech; motor cor-
tex: directs the motion of articulators; and auditory cortex: provides auditory
feedback. With regard to the motor cortex, the left cerebral hemisphere of the
brain consisting of bilateral supplementary motor area, the left posterior infe-
rior frontal gyrus, the left insula, the left primary motor cortex, and temporal
cortex is the major contributor towards the motor control of speech production
[1]. Also, several sub-cortical areas of the brain such as basal ganglia help in
voluntary motor control for language processing [2]; and cerebellum aids in the
rhythmical organized sequencing of speech syllables [3]. While it is known that
a myriad of brain regions participate in speech production, the true neural basis
for speech production is still poorly understood.

A better understanding of the speech mechanism is critical to help the
patients with severe neurological conditions (e.g., locked-in syndrome). Locked-
in syndrome (patients are fully paralyzed but aware) usually occurs due to
quadriplegia, severe brain damage, or neurodegenerative disease (e.g., amyotrop-
hic lateral sclerosis, ALS) [4] and results in the inability to speak in otherwise
cognitively intact individuals [5]. Neural signal based communication might be
the only way to help these patients to resume a meaningful life with some level
of verbal communication. Current Brain Computer Interfaces (BCIs) send direc-
tional commands to a computer based on the signal acquired from the brain
without needing any acoustic sound production [6]. EEG is the present de-facto
standard for BCIs owing to its characteristics of non-invasiveness, easy setup
requirement and high-quality signal acquisition with high temporal resolution
[7,8]. EEG-BCIs are believed to remain as the optimal choice for communica-
tion in paralyzed and completely locked-in patients with debilitating neurologi-
cal diseases [9]. However, typical EEG-BCI experiments require the subjects to
select letters from a screen with a visual/attention cue. This is time consuming
with an average synthesis rate of 1 Word/Minute [10] and hence not suitable for
spontaneous conversations in daily life. Recently, ECoG, which measures electric
potentials directly from the brain surface [11], has also been used for decoding
continuous spoken speech from the cortical surface [12]. However, it is invasive
in nature and hence can not be used for data collection from healthy subjects.
FMRI, on the other hand, estimates the neural activity from the voxels of the
brain by measuring changes in blood oxygenation [13]. Although fMRI has a very
high spatial precision [14] and has been used in related neuroscientific studies
[15], its slow nature hinders in continuous speech recognition.
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MEG measures the weak magnetic field induced synchronized neuronal ionic
currents during synaptic transmission using very sensitive magnetometers posi-
tioned around the head [16]. The higher temporal resolution and quiet nature of
MEG are advantageous over fMRI. It is also non-invasive and hence more prac-
tically suitable than ECoG. In contrast to EEG, the magnetic fields recorded by
MEG are less distorted than the EEG recorded electric fields at skull and scalp.
Also, it is reference-free and provides higher spatial resolution. Compared to
other modalities MEG might be a better choice to analyze the neural dynamics
during oromotor tasks of speech production. Moreover, prior studies on MEG
for decoding speech [17–19] support its advantages over other approaches.

Despite the advantages, MEG signals are sensitive to background noise and
motion artifacts. The motion of the facial muscles during speech utterance and
eye blinks yield large artifacts in the MEG signals. The recorded magnetic field
gradients are typically temporally averaged across trails to obtain an effective
signal above background activity [20]. However, recording a large number of trials
for the study of a particular stimulus evoked response can be very time consum-
ing. The number of required trials for the study of a stimulus evoked response is
a trade-off between the brain physiology (e.g., cell density, cell types, and loca-
tion) and the maximum number of possible trials with similar performance level,
maintaining a stable head position and avoiding eye blinks, etc. [21]. It has also
been shown that ensembles containing too many trials can also be problematic
[22]. With time, there is always a higher chance of motion artifact induction (due
to head movement or eye blinks) which subsequently reduces the signal quality.
Hence, the optimal number of trials of a MEG experiment is highly variable and
is still debated. Very few studies have suggested a reasonable number of MEG
trials as beyond either as many as possible [20] or typically between 100–300 [22].
However, no experimental evidence is given in these studies and the conclusions
are made based on assumptions of good practice.

In this study, we aimed to determine the optimal number of MEG trials that
are necessary and sufficient for effective speech decoding from the brain using
a machine learning algorithm, which has rarely been studied, to our knowledge.
We performed a speech decoding analysis based on a set of total trials from 5 to
70, respectively, where a high decoding accuracy indicates that more information
is encoded in the signals. An optimal number of trials N will be determined if
the decoding accuracy is decreased when the total number of trials is less than
N and also if the accuracy is not significantly increased (remains at the similar
level or even decreased) when the total number of trials is greater than N .

2 Data Collection

2.1 The MEG Unit

A 306 channel Elekta Triux MEG machine as shown in Fig. 1(a) was used in
the experiment. The machine is equipped with 204 number of planar gradiome-
ters and 102 number of magnetometers. The experiments were conducted at
the MEG Center, Cook Children’s Hospital, Forth Worth, Texas. The machine
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was housed within a two-layered magnetically shielded room, which reduced the
interference of unwanted background magnetic fields. A 3 fiducial point based
coordinate system was created for the subjects. Polhemus Fastrack digitalized
5 head-position-coils were used for the head positioning of the subjects inside
the MEG scanner. Comfortable seating of the subjects inside the MEG unit was
ensured with their arms resting on a table. A computer interfaced DLP projector
was used to display the visual cue of the stimulus on a back-projection screen.
The projector was situated at a distance of 90 cm from the MEG unit.
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Fig. 1. (a) The MEG unit, (b) MEG signal for 5 spoken phrases with a sensor

Fig. 2. Design of the experiment.

2.2 Participants and Protocol

Four young healthy, right-handed, English-speaking adults (2 males and 2
females) participated with their consent in the data collection. All the subjects
had normal vision and had no speech, language, and/or cognitive disorders.

The experiment was designed as a delayed overt reading task. Subjects were
asked to speak five short commonly used phrases: Do you understand me, That’s
perfect, How are you, Good-bye, and I need help. These sentences were chosen
from Augmentative and Alternative Communication (AAC) data. The experi-
ment was designed as 4 consecutive stages/segments: Pre-stimuli, Perception,
Imagination (or preparation), and Articulation (Fig. 2). The pre-stimuli stage
was a state of rest designed for 0.5 s. In the perception stage, a phrase stimulus
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was displayed on the screen for 1 s. During preparation, the subjects were asked
to prepare the phrase displayed in the previous stage with a 1-s fixation cross dis-
played on the screen. In the final stage, the fixation was terminated by displaying
a blank screen that signaled the subjects to speak the phrase (stimulus) at their
natural speaking rate. The average time period of this articulation stage was 2
(up to 2.5) s. A total of 100 trials for each of the 5 stimuli were recorded after
providing for roughly 1 s of non-movement baseline. To avoid the response sup-
pression to repeated exposure the stimuli were presented in a pseudo-randomized
order [23]. A prior training of subjects on sample stimuli was conducted to ensure
subject compliance. The entire experiment lasted for an average of 45 min per
subject. Sample MEG signals recorded through one of the sensors for the five
phrases are displayed in Fig. 1(b).

2.3 Data Preprocessing

MEG signals were acquired with a 4 kHz sampling frequency. A band-pass filter
of frequency range 0.1 Hz–1.3 kHz was applied to the MEG signals. Eye-blinking
and cardiac signals were recorded using integrated bipolar EOG and EEG chan-
nels. Head motion of the subjects was tracked using a scanner based continuous
head localization technique [24]. The articulated speech was recorded with a
standard microphone attached to a transducer placed outside the magnetically
shielded room. A custom air-pressure sensor was connected to an air-filled blad-
der attached below the jaw of the subjects. This recorded the jaw movements
of the subjects during articulation by measuring the depression in the bladder.
Both speech and jaw movement analog signals were fed into the MEG ADC
channels and were digitized in real-time as separate channels. The data recorded
through the MEG sensors were then epoched into trials from −0.5 to +4.0 s
centered on stimulus onset. The trials that contained high motion artifacts were
inspected visually and discarded [24]. Further, signals with erroneous movements
due to incorrect articulation (started either before the cue to speak or existed
within the baseline period for the next trial) were also removed. The remaining
trials were then down sampled to 1 kHz. After preprocessing, a total of 1635
valid samples collected from the four subjects remained for analysis.

3 Methods

For unbiased data length among subjects, a maximum of 70 trials per phase per
subject was considered for this study, as the minimum number of valid trials
remained after processing for one subject was 73 for one phrase. In order to find
the optimal number of trials, the data was partitioned into batches consisting
10n trials (for n = 0.5, 1, 2, ...7). Each batch was considered separately for analy-
sis, denoised and then spatiotemporal wavelet features were extracted. An ANN
model was trained with these features separately for each batch and the classi-
fication accuracies were compared. In our prior work [25], we had experimented
with Gaussian Mixture Model (GMM) and Support Vector Machines (SVM),
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but these classifiers were not able to produce good decoding accuracy. We also
tested Deep Neural Networks (DNN) for this purpose, but, as the data size was
limited, it resulted in data generalization even with two hidden layers.

3.1 Wavelet Analysis

Before analysis, first the MEG acquired signals were denoised using a complex
Morlet wavelet. These wavelets have a sinusoidal shape and are weighted by a
Gaussian kernel. Morlet wavelets effectively capture the local harmonic com-
ponents in the MEG time series and hence are popularly used in MEG data
processing [26]. Complex Morlet Wavelet w in the time domain t at different
frequencies f is given as:

w(t, f) = A exp(−t2/2σ2
t ) exp(2iπft) (1)

where, A = (σt

√
pi)−1/2, t = time, σt = wavelet time period, and i =

√−1. In
our analysis f0/σf = 5 was used, where σf is the shape of the Gaussian in the
frequency domain and f0 is the central frequency. The denoising was performed
in the frequency range of 0.1–120 Hz to accommodate for neuromagnetic signals
up to the high gamma frequency range with a central frequency at 1 Hz intervals.

Further, we decomposed the denoised signals into respective neural frequency
bands by using a Discrete Wavelet Transform (DWT) approach to select the
spatiotemporal features for further analysis. The underlying principle of wavelet
analysis is to express a signal X as a linear combination of a particular set of
functions, obtained by shifting and scaling a single function Ψ(t) as:

X(a, b) =
1√
a

∫ ∞

−∞
Ψ(

t − b

a
) x(t)dt, (2)

where, a and b are the scaling and shifting factors respectively. We have used
Daubechies (db)-4 wavelet transform and performed a 5 level decomposition of
the denoised MEG signal to find 5 different signals in the range of 0.1–4 Hz
(delta), 4–8 Hz (theta), 8–15 Hz (alpha), 15–30 Hz (beta), 30–60 Hz (gamma),
and 60–120 Hz (high gamma). Mathematically, the wavelet decomposition is
represented as

s = a5 + d5 + d4 + d3 + d2 + d1 (3)

where a5 is the 5th level approximation of the signal representing the delta band
frequency component whereas d1−5 are the respective layer detail components
such that d1 to d5 represent high gamma, gamma, beta, alpha, and theta band
frequency range respectively. Root Mean Square (RMS) values of the decom-
posed signals of all the trials were taken as the feature set to train the model.

3.2 Artificial Neural Network

A shallow ANN classifier was used in this study for its robust and effective non-
linear computational modeling attributes of data classification. ANNs have been
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widely used in pattern classification problems to model the particular inputs
leading to specific target outputs. The ANN model was designed to take the
RMS values of the wavelet decomposed sensor signals in the input layer. A
single hidden layer consisting of 256 nodes were used with random weights during
initialization. The maximum number of epochs was set to 100 to properly train
the model. A sigmoid activation function was used after the hidden layer which
transformed the learned weights into a non-linear hyper-dimensional space. A 5
dimensional fully connected softmax layer was used as the final layer to represent
the minimized cross-entropy of the 5 phrases. The weights (ωij) for nodes in the
hidden layer of the ANN at iteration (t + 1) are updated based on iteration (t)
via back-propagation using a stochastic gradient descent as:

ωij(t + 1) = ωij(t) + η
∂C
∂ωij

, (4)

where C is the cost function, η is the learning rate set to 0.01, i and j are the
input and hidden layer neuron labels respectively. The data was divided into
three parts as training, testing and validation data. Training data consisted 70%
of the whole data whereas the testing and validation data consisted 15% each
of the whole data. The validation data was used to check for data over-fitting
during training. Early stopping of the training resulted when the data starts
to generalize with this approach. Further, we have experimented with various
number of nodes to train the model to find that with a lower number of nodes
the accuracy decreased whereas with higher node selection the performance of
the model remained constant. Data over fitting resulted with more than 512
nodes in the hidden layer even after the 3rd epoch.

4 Results and Discussions

Figure 3 shows a comparison of the average speech decoding accuracies of the 4
subjects, obtained for each of the 4 stages of the speech production task at dif-
ferent trials. A peak at the 40th can be observed for the articulation, imagination
and perception stages indicating the best performance with 40 number of trials.
Although, as hypothesized, for the articulation and perception stage the speech
decoding performance more or less saturated after 40 trials, the accuracy of
imagination stage resulted in a continuous decrease. Although at present, there
is no clear explanation for this behavior of the imagination stage, the absence of
external stimuli or overt movement (For perception there were visual stimuli and
during articulation, the produced overt speech sound was the feedback stimuli)
might allow for more endogenous variability in the neural signal. After reaching
optimal SNR, this variability may override any increased value of more trials.

To more accurately verify, if 40 is the optimal number, we performed the anal-
ysis with 32, 35, 37, 39, 41, 43, 45, 47 and 49 trials. The pattern remained consis-
tent with the best accuracy obtained with either 39 or with 40 number of trials.
Further, for statistical validation, we implemented a 4-way ANOVA across trials
with the four subjects as the 4 factors for each stage (pre-stimuli, perception,
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Fig. 3. Speech decoding accuracy at various total number of MEG trials

Fig. 4. Comparison of SNR for raw and denoised MEG signal at different trials

imagination, and articulation) respectively. Results indicated no statistically sig-
nificant differences across subjects (p > .05) for each stage.

Figure 4 manifests the variation of the min-max normalized SNR of the raw
MEG signal and wavelet decomposed MEG signal at different numbers of trials.
It can be seen that, in case of the raw MEG signal, the SNR value was increased
continuously with an increase in the number of trials. However, after denoising
with wavelets, the SNR values were saturated after 40 trials. Hence, with proper
denoising of the signal prior to analysis, 40 number of MEG trials could be
sufficient for best speech decoding performance.

Among the 4 stages, during articulation, the highest model performance was
obtained with an average accuracy of 89.03%. The average accuracy of 78.35%
was maximum for classification of covert speech, i.e., during the stage of imag-
ination. The additional involvement of the motor and auditory cortex regions
of the brain to facilitate articulation and auditory feedback respectively could
be the reason for the resulting higher accuracy in articulation. Perceived speech
phrase classification was poorer. The pattern of increasing accuracy during the
pre-stimuli stage can be clearly observed in the Fig. 3. Although, the subjects
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were at rest and the accuracy should be at the chance level for this stage, with an
increase in the number of trials the speech decoding accuracy was increased. The
most probable reason for this is that the subjects may have started to memorize
the stimulus with time, as in total 5 number of stimuli were used.

Limitation. Although the results are promising, the dataset considered in this
study is relatively small. A further analysis with a larger data set from more
number of subjects is needed to validate these findings.

5 Conclusion

In this study, we investigated to determine the optimal number of MEG trials
from a machine learning and speech decoding perspective. A total of 40 trials
were found to be sufficient and necessary for the maximum speech decoding per-
formance. Wavelet denoising resulted in a saturated SNR after 40 trials. Limiting
the MEG trials will facilitate for huge improvement in experiment and computa-
tion time as well as cost reduction. We also demonstrated that speech decoding
directly from the brain is possible with an accuracy of 89.03% during articula-
tion whereas the imagined speech information can be extracted with an accuracy
of 78.35%. Although 40 trials were obtained to be optimal for speech decoding
task, it may not be optimal for other task-evoked MEG experiments.
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