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a b s t r a c t 

Magnetoencephalography (MEG) is a functional neuroimaging tool that records the magnetic fields induced by 
neuronal activity; however, signal from non-neuronal sources can corrupt the data. Eye-blinks, saccades, and car- 
diac activity are three of the most common sources of non-neuronal artifacts. They can be measured by affixing 
eye proximal electrodes, as in electrooculography (EOG), and chest electrodes, as in electrocardiography (ECG), 
however this complicates imaging setup, decreases patient comfort, and can induce further artifacts from move- 
ment. This work proposes an EOG- and ECG-free approach to identify eye-blinks, saccades, and cardiac activity 
signals for automated artifact suppression. 

The contribution of this work is three-fold. First, using a data driven, multivariate decomposition approach based 
on Independent Component Analysis (ICA), a highly accurate artifact classifier is constructed as an amalgam of 
deep 1-D and 2-D Convolutional Neural Networks (CNNs) to automate the identification and removal of ubiq- 
uitous whole brain artifacts including eye-blink, saccade, and cardiac artifacts. The specific architecture of this 
network is optimized through an unbiased, computer-based hyperparameter random search. Second, visualiza- 
tion methods are applied to the learned abstraction to reveal what features the model uses and to bolster user 
confidence in the model’s training and potential for generalization. Finally, the model is trained and tested on 
both resting-state and task MEG data from 217 subjects, and achieves a new state-of-the-art in artifact detection 
accuracy of 98.95% including 96.74% sensitivity and 99.34% specificity on the held out test-set. This work auto- 
mates MEG processing for both clinical and research use, adapts to the acquired acquisition time, and can obviate 
the need for EOG or ECG electrodes for artifact detection. 
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. Introduction 

Magnetoencephalography (MEG), is a functional neuroimaging
ethod that offers better temporal resolution than fMRI ( Bellec et al.,
010 ; Dekhil et al., 2018 ; Duan et al., 2013 ; Fatima et al., 2013 ).
EG also uses a more direct measure of neuronal activity via the
agnetic flux induced by neuronal activity compared to fMRI, which
easures activity indirectly through the blood-oxygen-level-dependent

BOLD) response that can be compromised through vascular decou-
ling. Compared to electroencephalography (EEG) which is also a di-
ect measure of neuronal activity, MEG’s reliance upon magnetic flux
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ather than electrical conduction is advantageous as the flux is less af-
ected by intervening tissue characteristics and can yield more accurate
ource space reconstruction ( Buzsáki et al., 2012 ; Fatima et al., 2013 ;
uthukumaraswamy, 2013 ). Nevertheless, MEG is vulnerable to noise

rom non-neuronal sources. For example, the spectral bandwidth of mus-
le activity overlaps with the gamma-frequency band of neuronal activ-
ty ( Criswell and Cram, 2011 ; Muthukumaraswamy, 2013 ). In particu-
ar, eye-blink (EB) artifacts, saccade (SA) artifacts, and cardiac activity
CA) artifacts, which are three of the most common sources of artifact in
EG data, share frequency bands (1 Hz – 20 Hz) with alpha, theta, and

elta brain waves ( Breuer et al., 2014 ; Zikov et al., 2002 ). Fig. 1 shows
ow such artifacts can corrupt much of brain source space when recon-
y 2021 
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Fig. 1. The manifestation of MEG artifacts in brain space, reconstructed using minimum norm estimate (MNE) source localization. First row: projection of isolated 
cardiac artifact ICA component. Second row: projection of isolated eye-blink artifact component. Third row: projection of all 20 ICA components, including artifacts. 
Fourth row: projection of only the all neuronal ICA components without the cardiac and eye-blink components. Both cardiac and eye-blink artifact projections can 
demonstrate diffuse activity across much of brain space. The amplitudes in third row are much higher than fourth row due to the effects of artifacts on source space. 
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tructed directly from the MEG sensor signals, making artifact identifi-
ation and suppression crucial for mapping true brain activity. 

Manually removing artifacts from MEG using Independent Com-
onent Analysis (ICA) can improve MEG signal-to-noise ratio by up
o 35% on task MEG and it has been suggested that these conclu-
ion hold for resting-state MEG ( Gonzalez-Moreno et al., 2014 ). ICA
s a source separation method that decomposes the data into individ-
al independent components, separating artifact and signal in the pro-
ess. However, these components are randomly ordered and must be
anually labeled as neuronal signal or artifact ( Gross et al., 2013 ;
uthukumaraswamy, 2013 ) allowing the neuronal components to be

rojected back into sensor space. Manual labeling of artifacts for MEG
rocessing is prohibitive as it is both time consuming and requires a MEG
xpert. In addition, manual labeling is subjective as it is dependent on
he rater’s experience, which can decrease the reproducibility of MEG
rocessing. To automate the detection of EB and CA artifacts, some re-
earchers use electrooculography (EOG) and electrocardiography (ECG)
lectrodes to separately record the eye-blink and cardiac artifact signals
 Breuer et al., 2014 ). However, these methods can add complexity and
ime to the data acquisition setup (especially important for large co-
orts), can be uncomfortable for the some subjects such as those with
ensitive skin, and may induce additional artifacts from postural mus-
le movements and facial twitching. Additionally, although ICA compo-
ents can be ranked based on correlation with the signal from the EOG
nd ECG electrodes, manual labeling is still required in commonly used
ipelines ( Tutorials/Epilepsy - Brainstorm, 2021 ). This work presents an
utomated, objective, pipeline that can detect EB, CA and SA artifacts
n MEG data that does not require EOG- and ECG-recordings. 

This work aims to automate the removal of ICA components to in-
rease the signal to noise ratio of MEG data, and make MEG data more
eadily useable. To achieve this we build a highly accurate, general-
zable, unbiased, and adaptable model to automate the detection and
emoval of ICA artifacts in MEG. In addition, the general framework is
ade open source such that others can create a custom pipeline for their
ork, if needed. In our previous work, a neural network was built to de-

ect eye-blink artifacts using the ICA derived spatial maps ( Garg et al.,

p  

2 
017b ). Later, models were designed that can detect eye-blink and car-
iac artifacts using the ICA derived time courses ( Garg et al., 2017a ).
thers have also published work automating the detection of artifactual

CA components, these works are compared to this work in Section 4.1 .
his research builds on our past work, and provides various improve-
ents to prior work published by others in several important aspects in-

luding; an increase in performance, an increase in model generalizabil-
ty and reliability, and generation of a highly optimized, custom model.
o achieve these objectives (1) a large dataset is formed for model train-

ng consisting of both resting-state and task-based MEG. This training
ataset includes subjects from 3 different databases, span a large age
ange of 15 to 73 year old subjects, and includes both sexes. (2) The
odel is trained to seamlessly integrate both ICA spatial maps and the

ime courses for artifact detection. (3) Models are built to that take ad-
antage of the available acquired MEG data regardless of the acquisition
uration: e.g. 1–80 min. (4) Held out test performance and validation
erformance, rather than just validation performance is reported to fa-
ilitate results comparison. (5) The model is optimized using an exten-
ive automated neural architecture search. (6) Ground truth is formed
rom the consensus of 4 expert raters. (7) Finally, the model is shown to
e highly interpretable and understandable through an analysis reveal-
ng what parts of the spatial maps and time courses are used for artifact
etection. 

. Materials and methods 

.1. Magnetoencephalography data 

This study uses both resting-state and task-based MEG data from 294
cans from 217 subjects with ages ranging from 10 years to 73 years. To
nclude both resting-state and task MEG, both sexes, and achieve such
 wide age distribution, data is drawn from three databases described
n the following sections. Demographics for the subjects in the overall
EG training dataset are summarized in Table 1 . 

From the 217 subject dataset, 46 subjects and a total of 62 scans
20% of the data) are set aside prior to training for testing the model’s
erformance, while the remaining 80% or 171 subjects with a total of
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Table 1 

Demographics of each database, and the combined dataset used in this 
work. 

Database McGill iTAKL HCP Combined 

Subject Count 82 49 86 217 
Age: Mean(std) 34.6(9.33) 13.3(2.63) 28.8(3.24) 28.5(8.87) 
Age: min/max 28/73 10/18 23.5/33 10/73 
Sex: M/F 41/46 49/0 74/11 164/57 

2  

m  

s  

d  

t  

s  

a  

f  

s  

t  

T

2

 

o  

(  

7  

a  

w  

q  

(  

a

2

f

 

f  

s  

A  

(  

t  

a  

t  

6

2

 

2  

a  

w  

T  

M  

f  

t  

i  

M  

s  

i

2

 

F  

s  

w  

m  

d  

t  

a  

w  

m  

T  

c  

f  

t  

a  

t  

F  

a  

s  

w  

v

2

 

c  

h  

t

2

 

(  

r  

c  

F  

fl  

a  

p  

n  

a  

r  

m  

i  

t  

s  

f  

fi  

f  

H  

B  

–  

t  

2  

2  

c  

i  

u  

t

2

 

a  

o  

p  

f  

T  

f  

a  

a  
32 scans are subsequently partitioned by 10-fold cross validation for
odel training and hyperparameter optimization. The winning model is

elected and its performance is evaluated on the held out test set not used
uring training or model selection. All splits including the test split, and
he folds of the 10-fold cross validation are similarly stratified by age,
ex, site (origin database), and scan type (resting-state or task-based),
nd grouped by subject. Statistical tests, including a Student’s T-test is
or continuous-valued age, and the Chi square test used for sex, site, and
can type, reveal the success of the stratified partitioning with no sta-
istically significant differences ( p < .05) between splits (Supplemental
able S1). 

.1.1. Database 1: McGill OMEGA dataset 

Five minutes of continuous resting-state, eyes-open MEG data was
btained from 82 volunteers within the Open MEG Archive (OMEGA)
 Nisoet al., 2016 ). This dataset contains subjects with ages 18 through
3 years and is 53% female. The participants were instructed to look
t a target (fixate) during the acquisition. The McGill OMEGA dataset
as collected on CTF whole-head MEG system (VSM MedTech Ltd., Co-
uitlam, Canada) that consist of 275 first-order axial-gradiometer coils
 ctfmeg, 2020 .000Z). MEG signals were sampled at a rate of 2400 Hz
nd a bandwidth of 1–80 Hz. 

.1.2. Database 2: Imaging telemetry and kinematic modeling in youth 

ootball (iTAKL) dataset 

Eight minutes of continuous resting-state MEG data was obtained
rom 49 male football players: 30 youth (10–13 years) and 19 high
chool (14–18 years old) subjects, as part of the Imaging Telemetry
nd Kinematic modeling in youth football (iTAKL) concussion study
 Davenport et al., 2014 ). The participants were instructed to look at a
arget (fixate) during the acquisition. MEG signals were recorded using
 275 channel axial gradiometer whole-head CTF system with 29 addi-
ional reference sensors for noise cancelation, and sampled at a rate of
00 Hz with an acquisition bandwidth of 0.25–150. 

.1.3. Database 3: Human connectome project (HCP) dataset 

Task data was obtained from the HCP database ( van Essen et al.,
012 ). Scan times varied between 7 and 13 min. Three different tasks
re available and all 3 were used in this study: a sensory motor task, a
orking memory task, and a language processing (story memory) task.
o provide a roughly balanced number of resting-state and task-based
EG scans for training, a total of 150 task-based scans were selected

rom 89 different subjects. The 150 scans were selected by maximizing
he number of subjects, while also maximizing age range, and balanc-
ng the sex and number of scans per task. HCP used a MAGNES 3600
EG system with 248 magnetometer channels, 23 reference channels, a

apling rate of 2034.5101 Hz, and a bandwidth of 1–90 Hz. Additional
nformation on the task data is available in ( Larson-Prior et al., 2013 ). 

.2. Overview of the proposed MEG pipeline 

An overview of the proposed MEG processing pipeline is shown in
ig. 2 . Constituent electrical activity in the physical space of the MEG
canner ( Fig. 2 a) include eye-blinks, saccades, and cardiac activity as
ell as true neuronal activity. These activities induce magnetic flux
easured by the MEG sensors near the scalp. Raw MEG sensor space
3 
ata is corrupted by the non-neuronal activity and can manifest as large
roughs and perturbations in the sensor space data ( Fig. 2 b, left, red
rrows). Consequently, a naïve reconstruction of brain space activity,
here raw data is projected into source space without prior artifact re-
oval, does not estimate well the true neuronal activity ( Fig. 2 b, right).
he proposed pipeline applies preprocessing, and extracts independent
omponents ( Fig. 2 c) via ICA in steps whose details are described in the
ollowing sections. The proposed MEGnet classifier (described below)
akes the independent components, each comprised of a spatial map and
 time course, as input and labels each component as an EB, SA, CA ar-
ifact or a non-cardiac/non-blink/non-saccade independent component.
rom here onwards, the latter category will be referred to as the non-
rtifact (NA) label. Projection of only the NA components back onto sen-
or space reveals substantially cleaner sensor space signals ( Fig. 2 e, left)
hich, when used to reconstruct the brain source space activity, pro-
ides a more accurate estimate of actual brain activity ( Fig. 2 e, right). 

.3. Preprocessing 

Data preprocessing steps included: down-sampling to 250 Hz, appli-
ation of a notch filter to suppress line noise at 60 Hz and its first 2
armonics, and band pass filtering to 1–100 Hz using the Brainstorm
oolbox ( Tadel et al., 2011 ). 

.4. Independent component analysis 

The data was decomposed into 20 components via InfoMax ICA
 Bell and Sejnowski, 1995 ). InfoMax is frequently used for MEG and is
eadily available in the Brainstorm toolbox. Each of these components
onsists of a pair of spatial maps and activation time courses, as shown in
ig. 3 . The spatial map reveals the areas of magnetic influx (red) and out-
ux (blue) across the scalp while the time course indicates the temporal
ctivation pattern of the spatial map during the MEG acquisition. Such
airs will be discussed in further detail in the subsequent sections. The
umber of components (20) is chosen for several reasons. First empirical
nalysis indicated that between 18 and 25 components yielded artifacts
eadily identifiable by our expert human readers, and there was unani-
ous consensus among the 4 expert raters that the artifacts were most

dentifiable using a 20 component decomposition. There is a tradeoff: at
he low end, the raters noted that the artifacts are occasionally not well
eparated from non-artifact signal, while at the high end, artifacts more
requently split into multiple components. Multiple studies have identi-
ed between 8 and 14 canonical resting-state networks in resting-state

unctional MRI (rs-fMRI) ( Beckmann et al., 2005 ; Giorgio et al., 2015 ;
euvel and Hulshoff Pol, 2010 ; Smitha et al., 2009 ) and the standard
rain Nexus atlas includes 13 templates ( Resting-State fMRI Templates
SCANlab, 2020 ). These networks have largely been shown to extend

o electrophysiological neuroimaging, including MEG ( Brookes et al.,
011 ; Coquelet et al., 2020 ; van Dyck et al., 2020 ). Thus, the choice of
0 ICA components presents a reasonable balance: it provides enough
omponents to account for both the variability due to canonical biolog-
cal networks and artifact sources while not dividing components into
nrecognizable waveforms. In this study, the predictive models use both
he spatial map and the time course components as inputs. 

.4.1. Ground truth labeling of ICA components 

The component pairs from all subjects are independently classified
s EB, SA, CA, or NA signal by 4 expert raters, with more than 23 years
f experience in MEG data interpretation between them. If a component
air was not identically labeled by 3 or more raters, then it was flagged
or discussion. A total of 52 of the 5880 component pairs were flagged.
he raters then discussed and came to unanimous single label consensus
or 39, while there remained a split decision for 10, with a split between
rtifacts and neuronal. These 10 were assigned the label NA, to encour-
ge the subsequently trained predictive model to favor retaining signal
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Fig. 2. The acquisition of MEG data and proposed post-processing pipeline with comparison to direct source reconstruction from sensor space time series. (A) Primary 
electrical activities in the physical acquisition space of the MEG scanner include: eye movements, particularly eye-blinks, cardiac activity, and electrical activity from 

neuronal firing (right). (B) Raw recorded sensor space of sensors near the scalp, with perturbation from blink artifacts indicated by red arrows (left) and a direct 
reconstruction in brain source space, without artifact removal (right). (C) ICA component extraction. (D) Overview of proposed MEGnet classifier to identify neuronal 
components. (E) Projection of components onto sensor space, with CA and EB artifacts removed, allows for a more faithful reconstruction of actual activity in brain 
source space (right). 
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n such cases. For the remaining 3 component pairs there was unani-
ous agreement that the component pairs contained both saccade and

link signal, these were subsequently labeled as saccade. Out of the to-
al 5880 components, 4988 were labeled as NA, 285 EB, 183 SA, and
24 and CA. Representative examples of the component pairs from three
ubjects are shown in Fig. 4 . The three components shown in the first
ow of Fig. 4 b are illustrative of the inter-subject variation observed in
he spatial maps of the cardiac artifact. The corresponding inter-subject
ariability in the time courses is shown in the top most panel of Fig. 4 a.
ubsequent rows in Fig. 4 show the variation across subjects in the spa-
ial maps and time courses of the EB, SA, and NA signals. 
4 
.4.2. Preparation of the 2D-Spatial maps 

The preprocessing pipeline renders the spatial maps from ICA as
opographic maps in the form of colored RGB images for ease of hu-
an interpretation, examples illustrated in Fig. 4 a. The spatial maps

re generated using the “2D disk ” display of Brainstorm, which projects
he flux information from the 3D arrangement of sensors near the
calp surface onto a standardized 2D circular space while minimiz-
ng distortion ( Tadel et al., 2020 .000Z). To reduce the input size,
he 2D images are cropped to the bounding box containing just the
isk, and has a final dimension of 120 pixels x 120 pixels x 3 color
hannels. 
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Fig. 3. Representative example of the ICA 

components extracted from a single subject. 
Each of the 20 components consists of a spa- 
tial map and a time course of map activation. 
(A) The 20 activation time courses of each 
spatial (B). The corresponding spatial maps 
capturing magnetic influx (red) and outflux 
(blue). The spatial map is projected into a 2D 

disk, and orientated as a top down view, with 
the subject’s nose at the top. 
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.4.3. Preparation of the 1D-time courses 

In order to make the trained classifier capable of handling recordings
f varying lengths, the time components are split into 60 second epochs
15,000 time-steps when sampled at 250 Hz) with a 15 second overlap,
how in Fig. 5 . In order to use all the data when the time series cannot
e evenly split, the final 60 second epoch is taken as the last 60 s of the
can, and has a larger than 15 second overlap with the prior epoch. This
pproach, allows for all acquired data to be used both for training and
esting the model. The 15 second overlap ensures that any predictive sig-
al will be completely captured in at least one epoch without any edge
5 
ffects. Additional information on the implementation for both training
nd testing described in Section 2.8 . Sixty second epochs are used as the
link artifact has the largest period of the classified artifacts. With an
verage blink interval of about 20 s, a 60 second epoch will typically
ontain signal from at least 2 blinks. 

.5. Convolutional neural networks 

Convolutional neural networks (CNN) have demonstrated remark-
ble success identifying real world objects in images in the Image-
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Fig. 4. Inter-subject variability in spatial maps and time courses is apparent in these four representative subjects. (A) Time courses for each signal category (B). 
Spatial maps from 4 subjects for each signal category. 
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et Large Scale Visual Recognition Challenge ( Krizhevsky et al., 2017 ;
ussakovsky et al., 2015 ; Simonyan and Zisserman, 2015 ). Such 2D
NNs (2D images with additional color channel) automatically learn
he appropriate filters needed to accurately categorize the contents
f a color image. Prior to the use of CNNs, the best algorithms used
lters with manually crafted coefficients, which were applied to the

mages to extract local features. By 2016, through refinement of the
NN approach, the error rate surpassed human object recognition per-

ormance achieving an error rate of less than 3%. Inspired by these
uccesses, the classifiers evaluated in this study employ combinations

f CNNs. s

6 
.6. Model construction 

The overall structure of the proposed model’s architecture consists
f three subnetworks as illustrated in Fig. 2 d. The general structure of
he model entails a two-dimensional CNN to process the spatial maps, a
ne-dimensional CNN to process the time courses, and a dense feedfor-
ard network that merges via concatenation the latent representations

earned by the two CNNs and outputs the predicted component class:
ye-blink artifact, saccade artifact, cardiac artifact, or NA. Importantly
he specific architectural design has been optimized through an exten-
ive random search, which is described in the following section. 
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Fig. 5. Splitting time series into epochs and weighted voting. To provide a prediction on scans of varying length, the data is split into evenly sized 60 second epochs 
with a 15 second overlap, and voting is used for the final classification. A. The complete scan with a 10 min length. B. The complete scan is split into 60 second 
epochs, with corresponding spatial map. C. MEGnet is used to make a classification on each of the 60 second epochs. D. A weighted mean is used as a voting system 

to produce a final prediction for all of the data epochs. 
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.7. Random search model optimization 

There are many hyperparameters that must be chosen when con-
tructing neural networks. In order to select optimal hyperparameters
or the model’s architecture, an extensive random search was conducted
n which a total of 150 unique networks were constructed, trained, and
valuated using the random search ( James Bergstra, 2012 ). To run the
andom search, a finite hyperparameter configuration space is defined
nd randomly sampled to define architectural configurations to eval-
ate. The hyperparameters of the configuration space and the ranges
earched for each dimension are summarized in Table 2 . The specific
yperparameters searched for each of our 3 subnetworks are described
n the following 3 sections. In addition to these hyperparameters, which
mpact individual parts of the model architecture, there are 2 hyperpa-
ameters that are optimized that impact the entirety of each generated
odel. These include: (1) the kernel weight initializer that is selected from
e normal, He uniform, Glorot normal or Glorot uniform, and, (2) the
ctivation function that is selected between Parametric Rectified Linear
nit (PReLU) or Rectified Linear Units (ReLU). The order of batch nor-
alization is subject to current debate, and therefore is also included in

ur hyperparameter search and the results are described in Section 4.2 .

.7.1. Search space of the spatial subnetwork 

Specifically, for the spatial map 2D CNN subnetwork, the hyperpa-
ameters optimized included: the number of convolutional layers, the
umber of 2D convolutional filters for each layer, the kernel dimensions
or each layer, whether to insert a maxpooling layer after each convolu-
ional layer and whether batch normalization should be included after
ll of the convolutional layers in the spatial network. The number of con-

olutional layers was randomly drawn from a uniform distribution with
 range of 1 to 10. The number of filters per convolutional layer was ran-
omly drawn from a uniform distribution with a range of 1 to 64. The
lter kernel dimensions were randomly selected from a uniform distribu-
ion with a range of 2 to 12, and was always square (height = width). The
7 
lters for the first layer span two dimensions in space and an additional
imension across color channel. The search space for the spatial network
akes inspiration from both AlexNet and VGG-net. Similar to these net-
orks the search space includes the options of max pooling layers and

quare kernel size spanning from 2 × 2 to 12 × 12. Batch normalization
as also randomly chosen to be applied after each convolutional layer
r not applied at all. After each individual convolutional network there
as a 50% chance of adding a maxpooling layer with a window size of
 × 2. 

.7.2. Search space of the temporal subnetwork 

The configuration space searched for the time course 1D-CNN sub-
etwork included: the number of convolutional layers, the number of
lters for each layer, the kernel size for each layer, whether to insert
 maxpooling layer after each convolutional layer, and whether batch
ormalization should be included after all of the convolutional layers
n the spatial network. The number of convolutional layers was randomly
elected from a uniform distribution with a range of 1 to 10. The number

f filters was drawn from a uniform distribution with a range of 1 to 64.
he kernel size was drawn from a uniform distribution with a range of 2
o 16. The search space for the temporal network was similar to that of
he spatial network, however the maximum kernel size was increased
o 16 to ensure that for deeper networks, the last convolutional layer’s
eceptive field size could cover two consecutive QRS complexes, even
or subjects with very slow heartbeats of ~37.5 beats/min. 

.7.3. Search space of the dense feed forward neural network 

To combine the outputs of both models, the latent representations
earned by the 2D and 1D CNNs are combined via concatenation and are
nput into a dense feed forward network for classification. The search
pace for the dense network includes: (1) the number of layers ranging
etween 1 and 4, (2) the number of neurons ranging from 3 to 258, both
f these hyperparameters are drawn from a uniform distribution, and (3)
hether the input to the dense network should have batch normalization
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Table 2 

Defined hyperparameter search space and winning model’s hyperparameters. 

Spatial 2D Convolutional 

Parameter Range Final Model Values 

Number of 2D convolutional layers 1–10 8 
Number of filters per layer 1–64 25,47,11,42,24,26,21,28 
Kernel size (square) per layer 2–12 11,2,9,6,10,8,10,9 
Max Pooling after each convolutional layer T/F F,T,T,F,F,T,F,T 
Batch normalization after all convolution layers T/F T 
Batch normalization before activation T/F F 

Temporal 1D Convolutional 

Parameter Range Final Model Values 

Number of 1D convolutional layers 1–10 5 
Number of filters per layer 1–64, 4,23,27,19,47 
Kernel size per layer 2–16 5,4,12,9,8 
Max Pooling after each convolutional layer T/F T,T,T,F,T 
Batch normalization after all convolution layers T/F T 
Batch normalization before activation T/F T 

Dense Fully Connected Classifier 

Parameter Range Final Model Values 

Number of fully connected layers 1–4 3 
Number of filters per layer 1–258 117,203,31 
Dropout with rate of 0.5 after each layer T/F F,F,F,T 
Batch normalize T/F T 

Entire Model 

Parameter Options Final Model Values 

Activation function ReLU, PReLU PreLU 
Kernel weight initializer He normal, He uniform, Glorot normal, Glorot uniform He uniform 
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pplied. A dropout layer has the possibility of being added after the
ense layers with a dropout rate of 0.5, similar to AlexNet and VGG-
et. 

.8. Model training, selection, and final evaluation on held out test data 

.8.1. Model training through optimization of individual model weights 

To optimize the weights of each individual model configuration the
dam optimizer ( Kingma and Ba, 2014 ) was used. Adam was selected as

t combines the desirable properties from 2 commonly used optimizers:
MSprop and AdaGrad by including both the first and second moments
f the gradient. The categorical cross-entropy loss was selected as it out-
uts a probability over the set of classes for each component and this
as been shown in the literature to produce high performance for multi-
lass classifiers (e.g. AlexNet and GoogleNet). Balancing per class was
chieved by weighting the loss function by the ratio of each class. Each
old was trained for a maximum of 500 epochs (i.e. the number of iter-
tions that the training data is used to update the models weights via
ack propagation). While training models for hyperparameter optimiza-
ion, early stopping is employed to monitor the validation F 1 score and
alt training when the F 1 score stops increasing. This helps ensure that
odels do not overfit to the training data. 

.8.2. Cross-validation based model selection 

To compare performance across models, stratified group k-fold cross-
alidation is employed in which the components from a subject are
rouped together such that they are in either the training or valida-
ion set, but not both. Using this approach, the 217 training scans are
plit into 10 folds with roughly 23 scans per fold. None of the 62 scans
rom the test set subjects are used for model selection. The splits were
tratified for age, sex, site (source database), and scan type (resting-
tate, motor task, memory task, language task). Subsequent statistical
esting confirmed that there were no statistically significant differences
8 
etween the complete dataset and each split, Supplemental Table S1.
s the temporal data is of varying length, the temporal data is split into
0-second epochs. Exact numbers of epochs for each train, validation,
nd test split is provided in Supplemental Table S2. 

To select the winning model, the models are ranked according to
he lower bound of the 95% confidence interval of the F 1 macro score
cross the 10 folds. The score for each of the four classes in our model is
hen calculated, where class F 1 = ( 2∗ 𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐 𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 ) . Then, the mean of the

our scores irrespective of the number of samples in each class is taken,
lso known as the F 1 macro score. The F 1 macro score allows each class
o be weighted equally giving a fair account of the model performance,
ven in the presence of class imbalance. Additional performance metrics
nclude the F 1 micro score and a confusion matrix. The confusion matrix
ncludes performance for each class individually including sensitivity
true positive rate), false negative rate, positive predictive value, and
alse discovery rate. 

.8.3. Performance estimation on the test set 

After selecting the winning model configuration, the model was
rained on all training data, similarly split into 60 second epochs, and
hen evaluated on the held out test set of 1240 ICA component pairs
rom 62 test set scans. These 62 scans are not used for model training,
yperparameter optimization, or model selection. For final performance
n classification of the 1240 ICA components (20 from each of the 62
cans) test data, the model is evaluated based on its performance label-
ng components ( Fig. 5 ) as well as its performance labeling individual
pochs within components. The final classification of each entire ICA
omponent is formed from the weighted mean, over the posterior dis-
ribution of the models prediction for each class ( Fig. 5 C and 5 D). The
eighting is calculated by balancing the amount each time point con-

ributes to the overall prediction, to ensure time points that occur in
ultiple epochs don’t outweigh those in only one epoch. 
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.9. Revealing what the model has learned 

An important approach to gain insight into the abstraction learned
y the proposed model, is to examine the components it labels correctly,
ith both high and low confidence. For each ICA component pair, the
odel outputs a confidence for each class ( Fig. 5 D), the class with the
ighest confidence is the predicted class. Those examples labeled with
igh confidence, are the ones that the model has learned well are canon-
cal representations of the class, and contain features that are central to
he label in its learned abstraction. Conversely, those example compo-
ents, which the model predicts correctly but with lower confidence, are
n the periphery of its learned abstraction. Results from such an analy-
is can be compared to what human experts might consider canonical
eatures of each artifact class and neuronal component class. 

Another important approach to gain insight into the abstraction
earned by the proposed model, is to examine the importance or weight
he model assigns to specific inputs (features). An approach to achieve
his is called gradient class activation mapping (grad-CAM). This ap-
roach reveals which elements of an input feature vector are important
or a the model to make a specific class prediction ( Selvaraju et al.,
017 ). Grad-CAM uses the class-specific gradient information flowing
nto the final convolutional layer of a CNN to compute a localization
ap of the regions in the image important for making a classification.
his method is broadly applicable to CNNs, including both the 1D time
eries and 2D spatial map sub-networks used in this work. 

.10. Ablation study 

An ablation study was conducted to determine if both the time course
nd spatial maps are required to achieve maximum performance of the
inning model. The model was split into two single input network
odels, one containing the layers from the spatial map subnetwork

 Fig. 7 left subnetwork) and the other containing the layers from the
ime course subnetwork ( Fig. 7 right subnetwork). For each single input
odel, the model was trained using the 10 fold cross validation data

nd, like the complete model, early stopping was used to determine the
ptimal number of training epochs. To provide an equivalent compari-
on as well as statistical significance between the ablation tests, each of
he models’ performance is measured and compared on the validation
ata across the 10 folds. 

.11. Analysis of the architectural search 

The architectural search generates information about which hyper-
arameter combinations are likely to produce high and low performing
odels. To learn new lessons from this information, the performance of

he top and bottom performing models is visualized to reveal what pa-
ameters they tended to have using kernel density plots. In particular,
ernel density estimates (KDEs) are produced for the top and bottom
5% of models. In addition to the KDE plots, a contour plot of maxi-
um model performance per hyperparameter combination is also gen-

rated to reveal a terrain map of model performance over hyperparame-
er space. Visualizing the complete 18 dimensional space is not feasible,
owever pairs of hyperparameters can be displayed as terrain maps.
or this work, hyperparameter pairs are chosen that apply to the entire
odel, including activation, and number of layers, rather than hyper-
arameters like the number of filters per layer, which pertain to only a
mall part of the model. 

.12. Implementation of MEGNet 

MEGnet is written in Python 3.7.10 ( van Rossum and Drake Jr, 1995 )
sing Keras 2.4.0 ( Chollet and et. al, 2015 ) with Tensorflow 2.4.1
Martín Abadi et al., 2015 ) as the backend for the machine learning
odels. The implementation further makes of use these python modules:
umpy v1.19.2 ( Harris et al., 2020 ), pandas v1.2.3 ( McKinney, 2010 ),
9 
klearn v0.24.1 (Fabian Pedregosa et al., 2011 ). Ray tune v1.2.0
 Liaw et al., 2018 ) is used for the hyperparameter optimization. The
rainstorm toolbox v3.1 ( Tadel et al., 2011 ) is used for MEG pre-
rocessing and ICA extraction. 

. Results 

.1. Ground truth labeling of ICA components: inter-observer agreement 

To measure the inter-observer agreement between the expert raters,
leiss’ kappa and overall agreement percent are reported. Fleiss’ kappa
easures the degree of agreement above what would be expected by

hance and ranges from less than zero to one. A kappa greater than
.81 is often considered almost perfect agreement, and a kappa above
.61 is substantial agreement. Overall agreement is calculated as the
ean agreement across all raters for each ICA component rating. Inter-

bserver agreement of the 4 expert raters was very high with a Fleiss’
appa of 0.938 and an overall agreement of 97.5%. High agreement was
lso found on a per-class bases: for the class NA the Fleiss’ kappa and
verall agreement is 0.971 and 98.9% respectively, 0.87 and 95.1% for
B, 0.737 and 90.2% for SA, and 0.824 and 93.4% for CA. 

.2. Random search model optimization 

The performance of the 150 models from the unbiased architecture
earch is illustrated in Fig. 6 . Detailed performance results for each of the
50 models tested, are provided in Supplemental Table S3. A wide range
n performance is attained across model configurations. Some models
erformed very well ( Fig. 6 green), while others showed moderate abil-
ty to classify artifacts (yellow), and others demonstrated suboptimal
erformance (red). The figure inset provides a detailed comparison of
he models that performed best. The model with the highest lower bound
f the estimated F 1 macro score range over the validation folds is chosen
s the winning (selected) model. The change in maximum performing
odel was also monitored during the search. When the maximum per-

ormance reached an asymptote, the search was stopped as the conver-
ence indicated there is little further performance attainable by training
dditional models. 

The architecture of the top performing model is shown in Fig. 7 and
escribed in Table 2 (right column). In this model, the CNN subnetwork
hat processes the 2D spatial maps employs 8 convolution layers, 4 fol-
owed by max pooling ( Fig. 7 , left subnetwork). The 1D-CNN subnet-
ork processing the time course information ( Fig. 7 , right subnetwork)

ontains 5 convolution layers each, 4 followed by max pooling. Latent
epresentations of the spatial maps and time courses are flattened, con-
atenated and used as inputs to the dense feed forward subnetwork.
his subnetwork ( Fig. 7 , bottom) has three fully connected layers, the

ast layer having drop out applied while training, and terminated by an
dditional softmax layer that outputs the probabilities of each of the
omponent class: eye-blink, saccade, cardiac artifact, or NA. 

.3. Performance estimation on the test set 

The top performing model demonstrates very high performance on
he held-out test set. This model performance was quantified 3 different
ays. (1) First, it was computed at the whole component level, which

s the intended mode for use. Here the model attained an overall clas-
ification accuracy of 98.87% and an F 1 macro score of 96.60% and an
 1 micro of 98.87%. The overall artifact sensitivity and specificity are
6.73% and 99.34% respectively. Complete details of the model’s per-
ormance on the held out test data (not used during training or model
ptimization) is shown in the confusion matrix in Fig. 8 , and summa-
ized in Supplemental Fig. S1A. In Fig. 8 , the first four rows are the
ctual classes of the target components, while the first four columns
orrespond to their predicted classes. In each cell the number indicates
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Fig.. 6. Random search over model architectures reveals wide performance variation. A. The performance for all 150 tested networks ordered by the lower bound of 
the 95% confidence interval (shown as a bar) of the F 1 macro score across the 10 fold cross validation. The architecture for the winning model is indicated with the 
red arrow. Models can be roughly categorized by performance. In red are models with low F 1 macro and/or high variance. Yellow highlighted models demonstrate 
suboptimal performance. B. Models highlighted in green demonstrate the best performing models. 
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he number of components. The right most column provides the sensi-
ivity and false negative range (FNR) for each class, bottom row shows
he positive predictive value (PPV) and false discovery rate for each
lass. The model achieves a sensitivity or true positive rate of 98.28%,
4.44%, 95.60%, and 99.34% for EB, SA, CA, and NA components, re-
pectively. The model also obtains a PPV of 98.28%, 91.89%, 95.60%,
nd 99.43% for EB, SA, CA, and NA components, respectively. (2) Sec-
nd, performance on individual epochs was computed and is detailed
n Supplemental Fig. S1B where the model had an accuracy of 98.54%.
3) Third, model performance evaluated for each scan type, resting and
ask. This revealed that the model performs equivalently on both resting-
tate and task MEG. When the test data is split into resting-state and task
he model achieves an accuracy, F 1 macro and F 1 micro of 98.57%,
6.04%, 98.57% on the resting-state data respectively, and 98.95%,
7.03%, 98.95% on the task-based MEG respectively. Confusion ma-
rices for resting-state and task-based data are shown in Supplemental
ig. S1C and S1D respectively. 

.4. Revealing what the model has learned: What are the characteristics of 

omponents predicted correctly with high and low confidence? 

In the proposed model, the softmax layer outputs the input compo-
ent’s class probabilities and the predicted class is the class with max-
mum probability. This probability can be considered the model’s con-
dence in the predicted class, where a confident prediction has a prob-
bility of near 100%. The predictions for each component class are ex-
mined. First, for components classified correctly as cardiac artifact with
igh confidence, the spatial maps ( Fig. 9 ) have small, gradual change in
ux over the scalp and the temporal series contain a strong, regularly re-
eating signal in the frequency range of a human heart beat (~60bmp).
ardiac components predicted correctly with lower relative confidence
ontain more flux signal in the center of the spatial map and have a tem-
oral signal with greater noise amplitude between the repeating signal
eaks. This tends to agree with the human expert notion of a cardiac
rtifact, with predominantly signal near the center of the scalp spatial
ap and with a ~60 bpm frequency. Second, for components classified

orrectly as eye-blink artifact , the high confidence spatial maps contain
trong influx and outflux signal bilaterally in the ocular regions and have
ime courses with characteristic trough waveforms (dips) that are in-
icative of an eye-blink, less regular than a heartbeat, and with a longer
uration between the waveforms blinks than the heartbeat waveforms
 Fig. 10 ). The lower confidence correct eye-blink components (e.g. the
10 
ottom row with 58.91% confidence) lack a smooth bilateral signal in
he spatial maps. Third, the high confidence saccade artifacts ( Fig. 11 )
how large signal in the time series with more irregular spacing indica-
ive of saccades, and the spatial maps tend to have more symmetric
ux with a large deviation by the ocular region. The lower confidence
orrectly predicted saccade components have less pronounced flux de-
iation across the ocular regions, or have more noise between saccade
ignal in the temporal component. Finally, for components classified
orrectly as NA with high confidence, the spatial maps do not have
trong bilateral influx and outflux regions in the scalp periphery, but
ather have strong signal fluctuation nearer to the center of the scalp.
he NA time courses also show no regularly spaced peaks or troughs
hat could be indicative of heartbeats, or large isolated spikes in activ-
ty suggestive of eye-blinks ( Fig. 12 ). Collectively, these results provide
nsight into the model’s learned abstraction for each class. They show
hat the model reports a high confidence on inputs that clearly belong to
 certain component classification and produce lower confidence on the
arder inputs that would also be harder to classify by a human expert. 

.5. Revealing what the model has learned: What important features are 

earned from spatial maps and time courses? 

The results of applying Grad-CAM to the temporal and spatial compo-
ents are shown in Fig. 13 . When the model is applied to a correctly pre-
icted cardiac component , ( Fig. 13 , top row), the feature importance (red
urve) peaks in unison with the heartbeats (spikes, blue curve). The fea-
ure importance in the spatial map shown by a black to green to yellow
verlay, indicate that the model focused on the small, gradual change in
ux across much of the scalp. When the model is applied to a correctly
redicted eye-blink component, ( Fig. 13 , second row), the feature im-
ortance (red curve) peaks align perfectly with the signal troughs (blue
urve) that are characteristic of eye-blinks in the time course. Mean-
hile, the spatial map overlay shows a focus on both orbital lobes and

he center of the scalp, likely identifying the characteristic high edge
olor contrast at the regions of the two orbits and relative flux between
rbits and compared to the center of the scalp during eye-blinks. When
pplied to the correctly predicted saccade components, ( Fig. 13 , third
ow), the feature importance curve is elevated during the periods of
igh signal fluctuations associated with ocular movement. Feature im-
ortance of the spatial map, indicates that the model is focused on the
onsistent signal in the center of the map, as well as the gradient in the
ront ocular region. When the model is applied to a correctly predicted
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Fig. 7. Architecture of the best performing model. Overall, the spatial map and 
time course networks uses 8 and 5 convolutional layers respectively. 3 hidden 
layers are used in the dense merge network and drop out was used prior to the 
final layer. PReLU was used for the activation function along with He uniform 

initialization. 

Fig. 8. Confusion matrix showing the winning model’s performance on the held 
out test data. First four rows correspond to the actual (true) target classes, while 
the first four columns correspond to the model predicted classes. The bottom row 

shows the raw number and percentages of components predicted to belong to 
each class that are correctly (green) and incorrectly (red) classified called the 
precision (or positive predictive value) and false discovery rate, respectively. 
The right most column shows the percentages of all components belonging to 
each class that are correctly and incorrectly classified, called the sensitivity (or 
true positive rate) and false negative rate, respectively. The cell in the bottom 

right shows the raw component count and overall accuracy (green). 
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11 
A, ( Fig. 13 , bottom row) the feature importance (red curve) remains
elatively high throughout the NA signal, which has characteristic high
requency oscillations throughout the time course. The spatial map over-
ay shows how the network correctly focuses on the center of the scalp in
n area of high flux with a unique shape, which is typical for NA compo-
ents. Taken together, these results suggest that the model has learned
eaningful representations of the inputs and helps establish trust in the
redictions made and abstractions learned by the model. 

.6. Ablation study 

To determine if both the time course and spatial maps are required to
chieve maximum performance of the winning model an ablation study
as conducted. As shown in Fig. 14 , the model using only time course

nformation achieved a mean F 1 macro score of 80.1% with a standard
eviation of 0.81%. Meanwhile, the model using only spatial map in-
ormation worked statistically significantly better achieving a mean F 1 
acro of 89.05% with a standard deviation of 1.62%. However, the
nal model that uses both the spatial map and time course inputs out-
erforms both single input models, achieving a mean F 1 macro of 96.3%
ith a standard deviation of 1.16%. These differences are significant
ith a p value < 0.00001. These results indicate that the spatial map
nd time course inputs contain complementary information and both
ontribute to the overall performance of the proposed model. 

.7. Analysis of the architectural search 

The last 3 sections revealed insights into what the highest-
erforming model has learned and that there is a need to combine spa-
ial and temporal information to obtain maximum performance. The ex-
ensive unbiased architecture search of 150 models also reveals insight
nto the hyperparameter configurations that tend to achieve high arti-
act classification performance. 



A.H. Treacher, P. Garg, E. Davenport et al. NeuroImage 241 (2021) 118402 

Fig. 9. Examples of correctly predicted cardiac artifact components, ordered from high confidence (top) to lower confidence (bottom). 

Fig. 10. Examples of correctly predicted eye-blink artifact components, ordered from high confidence (top) to lower confidence (bottom). 
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One way that this can be achieved is by visualizing the performance
f the top and bottom performing models and examining what param-
ters they tended to have using kernel density plots. This reveals that
here is no one ideal configuration, but rather a set of configurations that
erform very well and it reveals which hyperparameter combinations
end to comprise good performing models. In particular, the highest and
owest performing 25% of the total 150 models, have been selected and
he density plots for these two groups of models is shown in Fig. 15 as
12 
he high (green) and low (red) performing surfaces. Since the full hyper-
arameter space has 18 dimensions, for visualization, each plot shows
wo hyperparameters. In the hyperparameter subspace spanned by the
umber of layers in the spatial and temporal subnetworks ( Fig. 15 a), a
ew high performing (green) peaks are evident. High performing networks

ypically have 2–4 or 6–8 convolutional layers in the spatial subnetwork and

, 6, or 8 convolutional layers in temporal subnetwork . For the hyperpa-
ameter subspace spanned by batch normalization in the temporal and



A.H. Treacher, P. Garg, E. Davenport et al. NeuroImage 241 (2021) 118402 

Fig. 11. Examples of correctly predicted saccade artifact components, ordered from high confidence (top) to lower confidence (bottom). 

Fig. 12. Correctly predicted NA components are ordered from high confidence (top) to lower confidence (bottom). 
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patial subnetworks, there is a preference (green peak) to use normalization

n the spatial subnetwork , but not in the temporal subnetwork ( Fig. 15 b).
inally, for the hyperparameter subspace spanned by the number of lay-
rs in the dense neural network and the activation used for the network
here is a preference for 2 dense layers ( Fig. 15 c). 

KDEs indicate a preference of specific hyperparameters rather than
he absolute performance attained for each hyperparameter combina-
ion. Another way to uncover insight into preferred hyperparameter
13 
onfigurations, is to visualize the highest performance attained at each
oint in hyperparameter space ( Fig. 16 ). For this visualization, the 2D
ubspace (pair of hyperparameters) with highest performance variance
ver its axes was chosen. This more nuanced, perhaps more noisy view,
onfirms that there are several high performing regions in hyperparam-
ter space (green regions) as well as several suboptimal configuration
egions (red regions), where even the best performing model’s with the
yperparameter combination did not perform well. 
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Fig. 13. Grad-CAM on an input from each 
class that the model predicts with high con- 
fidence. 

Fig. 14. Performance of the combined, spatial only and temporal only network 
across the k fold validation data. Early stopping was used to ensure each model 
did not overfit. Error bars show 1 standard deviation. All p values are highly 
significant at 3.99e-8, 2.32e-6, 3.71e-11 for spatial vs temporal, spatial vs both 
and temporal vs both respectively. P-values are calculated using a paired t -test. 
The highest performing model used both the spatial and temporal inputs. 
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. Discussion 

Based on our 4 expert raters, human expert inter-observer agreement
s estimated to be 97.5% percent with a Fleiss’ kappa of 0.938, thus
he winning model achieves performance at or very nearly the same
evel as the human experts, and it does so regardless of whether the
EG data is resting-state or task-based. Of all the detected artifacts,

accades appear to be the hardest artifact to identify. This is reflected in
lightly lower inter-human expert agreement and model performance,
hough the model does achieve good performance on saccade artifacts
sensitivity of 94.4% and PPV of 91.89%). Further, the analysis shows
hat the artifact detection by integrating voting across from the multiple
pochs per component ( Fig. 8 ) performs better in almost every single
14 
etric than single epoch prediction (Fig. S1B), suggesting that using
he complete component time series is preferable for prediction than a
ingle epoch. 

Achieving such a high performance level, suggests that the method
ay be used to obviate the requirement for human experts to identify

omponent artifacts. As the model performs well on the on the held out
est set, it can be expected to work well on MEG scans of people belong-
ng to either sex, and a broad range of ages (9 through 73 years) and on
ask and resting-state. The proposed model facilitates the use of MEG for
arge research studies and clinical applications, where a human expert
ay not be available or when the numbers of subjects is large, making
uman labeling problematic. The performance of the selected model
ompares favorably to the most closely related published works, which
re further described in Section 4.1 . Section 4.2 discusses the optimal
rdering of batch normalization and activation, while Section 4.3 dis-
usses limitations of this study. 

.1. Comparison to related work 

To date there has been limited research into the automation of arti-
act removal in MEG without the use of supplementary electrodes such
s EOG and ECG. To provide a most commensurable comparison, this
ection focuses on studies that do not use EOG and ECG electrodes. Three
ther papers, ( Croce et al., 2019 ; Duan et al., 2013 ; Hasasneh et al.,
018 ) also aimed to remove artifacts from the ICA components. An
verview comparing our work to those discussed here is presented in
able 3 . 

Duan et al. employed a support vector machine (SVM) that was
rained with five manually selected features (probability density, kur-
osis, spectral entropy, fractal dimension, and central moment of fre-
uency) extracted from the time courses from ICA. Hasasneh et al. and
roce et al. applied multi-input deep learning networks that are similar
o the models in this work. Duan et al., Hasasneh et al. and Croce et al.
ll report a cross-validation ( without held-out test set). 



A.H. Treacher, P. Garg, E. Davenport et al. NeuroImage 241 (2021) 118402 

Table 3 

A comparison of related work in automated MEG artifact detection. MEGnet generally outperforms the other models. Performance of MEGnet is conservatively 
measured on unbiased, held out test data, whereas other models’ typically report performance on validation data. Garg et al., 2017b is omitted as it classifies 
only eye blink artifacts, whereas all other methods classify both eye blink and cardiac artifacts. NR = Not Reported, Acc. = Accuracy, Sens. = Sensitivity, 
Spec. = Specificity. 

Type of Predictive Model 
Data Performance 

Subjects (N) 
ICA components 
(N) Handled Scan Types Ground truth method Acc. Sens. Spec. 

Duan et al. SVM 10 956 Resting State “manual inspection ” 97.41% 92.01% 99.65% 

Hasasneh 
et al. 

Multi-input Deep Neural 
Network 

48 1632 Task-based and 

resting state 

Independent methods 
and “visual inspection ”

94.4% 91.8% 97.4% 

Garg et al., 
2017a 

Single Input CNN 49 980 Resting State Single rater 95.86% 79.6% 98.2% 

Croce et al. Multi-input Deep Neural 
Network 

NR 4749 Task-based and 

resting state 

“trained experts ” 95.5% NR NR 

MEGnet Multi-input Deep Neural 
Network 

217 49,100 Task-based and 

resting state 

Independently by 4 

experts 

98.95% 96.74% 99.34% 

Fig. 15. Hyperparameters that tend to produce high and low performance. Kernel density plots of models with the top 25% and bottom 25% F 1 macro performance 
are shown in green and red respectively. A. For the number of layers in the temporal network and spatial network, four high performing (green) peaks are evident. 
B. For batch normalization in the temporal and spatial subnetworks, there is a preference (green peak) to use normalization in the spatial subnetwork. C. Among the 
number of layers in the dense neural network and the activation used for the network, there is a preference for 2 dense layers, and the opposite for 4 dense layers. 
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Notable in this comparison is that several other studies have used
mall sample sizes, which can be a significant impediment to reliable
erformance estimation. This study uses an extensive cohort with 217
ubjects, with a broad age distribution of 9 years to 73 years, and a
ixture of males and females. 1 Overall, the MEGnet model proposed in

his work demonstrates higher performance including 98.95% accuracy,

6.74% sensitivity and 99.34% specificity (Supplemental Fig. S1A). The
roposed model outperforms previously proposed models in all metrics,
xcept for specificity by Duan et al. which reported 99.65%, however
his is within 0.31% of the proposed MEGnet model and Duan et al. re-
ort cross-validation performance which tends to be inflated compared
o the more rigorous and conservative held out test performance, that
s used in our investigation. The higher performance of the proposed
odel herein is likely due to several factors: (1) an extensive, unbiased
yperparameter optimization ( Section 2.7 ), (2) the training upon data
rom multiple datasets, (3) and training upon a larger number of to-
al subjects. We suggest that a model learned from multiple sites’ data
an help the model generalize well since the model has already learned
nformation obtained from different technicians and acqusition proto-
ols. In addition, the model proposed in this work is trained and tested
n multiple types of scans including resting-state and 3 different tasks,
his helps ensure that the model will generalize well reguardless of the
ype of scan. In comparison, works such as Duan et al. reports are based
n a single scan type. Finally, in comparison to the work by Hasasneh
1 Duan et al. used 10 subjects roughly between 4-6 years old. Hasaneh and 
roce et al. did not detail demographics. 

s  

f  

15 
t al. and Croce et al., this study provides insights to what the proposed
EGNet model has learned, giving further assurances that the proposed
odel will generalize well. 

Our previous work ( Garg et al., 2017a , 2017b ), also removes arti-
acts. In those works, we separately used time course and spatial map
omponents to identify artifacts. In comparison, this work expands on
ur previous work in numerous ways. The present work uses a multi-
nput deep neural network to extract features from both the spatial
nd the temporal components, learns to integrate that information op-
imally, and demonstrates increased predictive accuracy over a much
roader test set. 

Other, related work focuses on the identification of bad channels
sensors) in MEG acquisition. Notably, Autoreject ( Jas et al., 2017 ) is
ne such bad channel rejection approach. We note that this work is
istinct from and complementary to ours. Jas et al. identify and re-
ove poorly performing sensor information from MEG data, while ex-
licitly indicating that a complementary approach is needed to re-
ove non-neurological physiological artifacts. Though not explored in this
anuscript, the integration of Autoreject and MEGnet presents an inter-

sting research direction to suppress both erroneous sensors and well
s remove non-neurological signal sources. While successful at reduc-
ng sensor artifacts, the authors of Autoreject specifically note that their
odel does not completely remove biological artifacts, and that ICA
ethods “naturally supplement autoreject … [as they] extract and sub-

equently project out signal subspaces governed by physiological arti-
acts such as muscular, cardiac and ocular artifacts ”. This work comple-
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Fig. 16. Performance landscape within the hyperparame- 
ter subspace consisting of the number of layers in the spa- 
tial subnetwork and the number of layers in the temporal 
network. Maximum performance across the tested mod- 
els is shown in each pixel entry. Several better perform- 
ing configurations (greener regions) are evident. A con- 
tour plot that interpolates and smooths raw performance 
helps intuit these regions. The performance of each pixel 
is measured corresponding best performing model’s lower 
95% confidence interval of the F 1 , measured on the val- 
idation data over the 10 fold cross validation. The final 
models parameters are indicated by the blue box. 

Fig. 17. The plots here show the importance of including the order of activation and batch normalization in the random search. The blue line represents the 
performance per epoch when the model has activation before batch normalization (BN) and the orange represents the model having batch normalization before 
activation. This was trained using 10 fold cross validation, and did not include the test data. Each point is the mean with error bars of one standard deviation across 
the 10 folds. A. The accuracy of the model per epoch on the training data. B. The accuracy of the model per epoch on the validation data. 

16 
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ents Autoreject by automating the accurate identification and removal
f these artifacts 

.2. What is the optimal ordering of batch normalization and activation? 

Since there is open scientific debate regarding whether batch nor-
alization should be performed before or after the application of the

ctivation function in each convolutional layer, an experiment was run
o determine the effect of the ordering. It consisted of creating two mod-
ls each of the same dual input subnetwork form illustrated in Fig. 2 d.
n one, model batch normalization was performed before the activation
ayer while in the other, it was performed afterwards. Both models were
hen trained identically and the training and validation performance
as computed using 10-fold cross validation ( Fig. 17 ). These results sug-
est that there is no clearly superior ordering. When activation precedes
atch normalization (blue curve), learning is faster, while when the op-
osite ordering is used (orange curve), the final performance is slightly
etter. Since these results may be architecture dependent, the ordering
as included in the random search of Section 2.7 . For the final model,

hown in Fig. 7 , batch normalization preceded activation in the tempo-
al network, and followed activation in the spatial network, and is not
sed in the merge network. 

.3. Limitations 

There are several limitations in this study. First, this study does not
nclude patients with abnormal P-QRS-T patterns such as patients with
 heart arrhythmia. Second, this study does not include patients with
eurological disease, such as myasthenia gravis or patients with eye
athologies and in these populations abnormal eye-blinks can occur.
hird, the final model was trained on subjects aged 9–73 years, but
ot on very young children and infants using specialized infant-MEG
canners; therefore, it may not detect artifacts in subjects with ages sub-
tantially lower than 9 years with the same high performance. Addition-
lly, while this model was trained on 3 different tasks including sensory
otor task, a working memory task, and a language processing, and

hus will likely perform will on other tasks, performance on other tasks
as not been tested thus cannot be guaranteed. However, the proposed
odel training approach includes a comprehensive architectural search

hat is fully automated. Therefore, with additional data spanning such
ases the approach could be readily adapted. Also, we target identifica-
ion of the most prolific and problematic cardiac, eye blink and saccade
rtifacts. We note that there are other artifacts, which could also be tar-
eted. With an appropriately labeled dataset, we expect the model could
e trained to identify such artifacts. To support such extensions, full
ource code is being made publically available. Finally, our ICA compo-
ents are extracted using Brainstorm. Preprocessing on other software
ackages or with different processing steps ( Section 2.3 and 2.4 ) could
ffect the performance of the model, however, brainstorm was selected
or this work as it is widely used, reliable, and open source. 

The proposed approach achieves human expert level performance,
hich suggests that it may be suitable for the analysis of other func-

ional neuroimaging scenarios, particularly those in which ICA is al-
eady a commonly used preprocessing step, including: fMRI, EEG, and
NIRS. In these modalities, ICA can also yield time course and spatial
ap components much like those that the proposed model processes for
EG. Adaptation of the proposed model for fMRI would require exten-

ion to 3D, but the classification task would otherwise have multiple
imilarities. 

. Conclusion 

MEG is a rapidly growing functional neuroimaging modality that has
he potential to facilitate diagnoses and prognoses in a wide range of
eurodegenerative diseases, psychological disorders and developmental
isorders. It is already being used clinically for pre-surgical planning in
17 
pilepsy, brain tumors and other indications requiring brain resection.
ore recently MEG has shown promise to discriminate neurodegenera-

ive disorders ( Guillon et al., 2017 ; Nakamura et al., 2018 ; Olde Dubbe-
ink et al., 2014 ), neurodevelopmental disorders (Kasturi Barik et al.,
020 ; Monge et al., 2015 ) and psychological disorders ( Crunelli et al.,
020 ; Wang et al., 2019 ). To obtain the most useful signals from MEG,
rtifact identification and suppression is vital since these artifacts can
orrupt large portions of the signal in brain space reconstructions. This
ork provides multiple contributions to the field of MEG neuroimag-

ng data analysis. First , this paper proposes an artifact classification ap-
roach that combines multivariate decomposition with a deep learning
ulti-subnetwork model that fully automates artifact separation and de-

ection directly in MEG data without the need for complicated patient
etup procedures that use EOG (electrooculography) or ECG (electrocar-
iography). Second , compared to the published literature, the proposed
odel achieves new state of the art accuracy detecting MEG artifacts
ith 98.95% accuracy, 96.74% sensitivity and 99.34% specificity. The
odel achieves this expert human level artifact classification perfor-
ance across a wide spectrum of subject ages: 9–73 years old. Third ,

his work utilizes a computational, unbiased model selection procedure
nsuring that the proposed model is well suited to the artifact classi-
cation task. Fourth, this research also reveals insights about suitable
andidate architectures from the unbiased model search, as well as the
eatures and abstractions learned by the top performing model. Fifth, the
tudy demonstrates that spatial maps and time courses contain comple-
entary information and therefore need to be combined to achieve a top
erforming classifier. Lastly , the proposed method is fully automated, re-
uiring no user input which facilitates automated MEG processing for
linical and research use and supports it adaptation for additional do-
ains. 
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