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Abstract. The effect of Type 2 Diabetes (T2D) on brain health is
poorly understood. This study aims to quantify the association between
T2D and perfusion in the brain. T2D is a very common metabolic dis-
order that can cause long term damage to the renal and cardiovascular
systems. Previous research has discovered the shape, volume and white
matter microstructures in the brain to be significantly impacted by T2D.
We propose a fully-connected deep neural network to classify the regional
Cerebral Blood Flow into low or high levels, given 16 clinical measures
as predictors. The clinical measures include diabetes, renal, cardiovascu-
lar and demographics measures. Our model enables us to discover any
nonlinear association which might exist between the input features and
target. Moreover, our end-to-end architecture automatically learns the
most relevant features and combines them without the need for applying
a feature selection method. We achieved promising classification perfor-
mance. Furthermore, in comparison with six (6) classical machine learn-
ing algorithms and six (6) alternative deep neural networks similarly
tuned for the task, our proposed model outperformed all of them.

1 Introduction

More than 29 million people (9.3%) in the United States have diabetes [2]. In
adults, Type 2 Diabetes (T2D) accounts for 95% of all diagnosed cases of dia-
betes. T2D is a metabolic disorder characterized by high blood sugar caused by
insulin resistance or relative lack of insulin. It has been shown that prolonged
T2D can result in chronic kidney disease (CKD), cardiovascular disease (CVD)
and diabetic retinopathy. Since the brain consumes a disproportionately large
amount of the body’s energy relative to its overall mass, it is reasonable to sus-
pect that diabetes may impact brain health. Currently the effect of T2D on brain
health has been under-studied. Understanding these effects will help unravel this
complex disease and enable a more comprehensive evaluation of candidate new
therapies.

Initial studies on T2D patients have found that diabetes [3,11] and renal
[9,14] disease measures are associated with volumes of certain neuroanatomical
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structures, however the relationship between diabetes and the perfusion of the
brain parenchyma has remained largely unknown. Additionally, according to
the U.S. Center for Disease Control, African American adults are about twice
as likely to be diagnosed with diabetes as European Americans [2]. Thus in
this study we aim to identify the association between diabetes-related disease
measures and regional brain perfusion in African Americans.

Several studies have linked diabetes to structural alterations in the brain.
Sink et al. [14] found significant associations between renal measures and hip-
pocampal white matter volume in African Americans with diabetic kidney dis-
ease, including the urine albumin to creatinine ratio (UACR) and the estimated
glomerular filtration rate (GFR). Freedman et al. [3] reported an inverse associa-
tion between aorta calcified plaque (a CVD measure) and the gray matter volume
of hippocampus in African Americans with T2D. In a study using Diffusion Ten-
sor Imaging (DTI), Hsu et al. [4] found that diabetes duration is significantly
associated with white matter microstructure measures, such as mean diffusivity
in several brain regions including bilateral cerebellum, temporal lobe, bilateral
cingulate gyrus, pons, parahippocampal gyrus and right caudate.

Given that these studies have shown an association between diabetes and
brain structure, we hypothesize that T2D also alters brain perfusion. This paper
tests our hypothesis. Our main contributions are threefold. First, a massive
univariate linear analysis approach is performed to identify candidate regions
meeting the most stringent multiple comparisons correction criteria. Second, a
fully-connected Deep Neural Network (DNN) architecture for predicting brain
perfusion level is proposed which automatically learns optimal feature combi-
nations and characterizes the T2D to perfusion association including any non-
linearities. Third, permutation testing is conducted to access the reliability of
proposed model’s accuracy via the notion of statistical significance.

2 Materials

This cross-sectional study consisted of 152 African Americans with T2D. Lab-
oratory tests were conducted to acquire measures of diabetes as well as related
renal and cardiovascular disease measures. The diabetes measures included
hemoglobin A1c (HbA1c) and diabetes duration. Renal disease measures included
UACR, GFR, blood urea nitrogen (BUN), serum potassium, total serum protein,
and urine microalbumin. Blood based measures of cardiovascular disease and
inflammation included calcified atherosclerotic plaque in the coronary arteries
(CAC) and C-reactive protein (CRP). Demographic measures obtained included
gender (56.8% female), age (mean 59.2 years), body mass index, smoking status,
and hypertension. These measures are summarized in Table 1.

Anatomical and perfusion MRI were acquired for every subject using a 3.0
Tesla Siemens Skyra MRI (Siemens Healthcare, Erlangen, Germany) with a
high-resolution 20-channel head/neck coil. T1-weighted anatomic images were
acquired using a 3D volumetric magnetization-prepared rapid acquisition gra-
dient echo sequence (Repetition time [TR] 2,300 ms; echo time [TE] 2.02 ms;
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Table 1. Diabetes and demographic measures included in the study.

Diabetes measures
UACR (mg/g) 83.7 (284.2)
CRP (mg/dL) 0.9 (1.5)
HbA1c (%) 8.0 (1.8)
Diabetes duration (years) 8.9 (7.5)
CAC (mass score, mg) 475.4 (1142.2)
GFR (mL/min/1.73 m2) 90.6 (23.5)
Serum Potassium (mmol/L) 4.1 (0.4)
Total Serum Protein (g/dL) 7.2 (0.5)
BUN (mg/dL) 15.6 (5.8)
Urine Microalbumin 110.2 (344.0)
(mcg/mg creatinine)

Demographic measures
Age (years) 59.2 (9.4)
Female Sex (%) 56.8
Education (%)

Less than High School 9.0

High school diploma 23.9

Some college 39.4

Associate degree 7.7

College graduate 11.6

After college 8.4

BMI (kg/m2) 34.1 (7.2)
Smoking

Never (%) 52.3

Past smoker (%) 28.8

Current smoker (%) 18.9

Hypertension (%) 86.4

inversion time [TI] 900 ms; flip angle [FA] 9◦; 192 slices; voxel dimensions
0.97× 0.97× 1 mm3). Eight phase pseudo-Continuous Arterial Spin Labeling
(pCASL) perfusion images were acquired with repetition time [TR] 4,000 ms;
echo time [TE] 12 ms; inversion time [TI] 3000 ms; flip angle [FA] 90◦; 26 slices/49
volumes; voxel dimensions 3.4 × 3.4× 5 mm3.

3 Methods

Our overall pipeline consists of these steps: (1) derivation of the mean Cerebral
Blood Flow (CBF) per brain region, (2) identification of candidate brain regions
via statistical analysis, and (3) fitting a DNN to quantify the association between
the candidate region’s CBF and diabetes measures. Each step is detailed below.

3.1 Compute Mean Gray Matter CBF per Anatomical Region

CBF volumes were computed from pCASL perfusion images in native space. To
parcellate the CBF maps into regional measures, each subject’s pCASL volume
was co-registered to the same subject’s T1-weighted image using affine trans-
formation. Then each subject’s T1-weighted image was spatially normalized to
Montreal Neurological Institute (MNI) space using a non-linear transform [1]
computed using the VBM8 toolbox1. These transforms were combined to spa-
tially normalize the CBF maps into MNI space. The automated anatomical label-
ing (AAL) atlas [15], implemented in WFU PickAtlas [7] was used to parcellate
the CBF map into 116 anatomical regions. A gray matter mask from VBM8
segmentation was applied to limit to the gray matter CBF voxels. Finally, the
mean gray matter CBF of the voxels in each region was computed to form a
vector containing the 116 mean regional CBF measures.

1 http://dbm.neuro.uni-jena.de/vbm.html.

http://dbm.neuro.uni-jena.de/vbm.html
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3.2 Identify candidate regions for further analysis

At this point the data consisted of 16 diabetes related predictors and 116 can-
didate regional CBF target measures. To prune the list of candidate regions a
massive univariate approach was applied to the 152 subject cohort. In this app-
roach 116 multiple linear regression models, each defined as y = b0+b1x1+b2x2+
...+b16x16 was fitted, where y is one of the regional CBF measures and xi are the
clinical measures. For each model, the coefficient of determination or R2 score
was computed to measure the goodness of fit while the probability of F-statistic,
p(F-statistic), was computed to measure the significance of the regression model.
Bonferroni multiple comparisons correction was applied, yielding a criterion for
significance of α = 0.01/116 = 0.000086.

Figure 1 shows the regions, sorted based on decreasing R2 from the linear
model fit to each region. The p(F-statistic) is also shown. 17 structures pass the
significance test, p(F-statistic) < 0.000086. The most significant region is the
right caudate with p(F-statistic) = 1.16e − 07 and R2 = 0.36. This agrees with
the finding in [4] of an association between diabetes duration and mean diffusivity
in right caudate, discussed in Sect. 1. This analysis reveals the caudate as one of
the structures significantly impacted by T2D, therefore in the following section
we train a DNN to predict caudate CBF level from diabetes measures in order
to quantify the association.
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Fig. 1. Fitting 116 multivariable univariate linear models for prediction of perfusion
in each AAL ROI from the 16 clinical features. The structures are ranked based on
the model’s R2. Also the p(F-statistic) is shown in red. The green horizontal line
indicates the significance threshold based on Bonferroni correction which has a height
of α = 0.000086. The significant regions are highlighted in green. (Color figure online)

3.3 Estimate Candidate Region Association Using a DNN

Subjects were ranked based on the perfusion of the CBF in the right caudate,
then the top 30% and bottom 30% samples were considered for classification.
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This resulted in 92 subjects: 46 with low and 46 with high CBF. Categorical
features including education, sex, hypertension and amount of smoking were
converted into numerical features. Each feature was scaled between zero and
one. Several fully connected, DNN model architectures were evaluated to clas-
sify the caudate perfusion level. In each tested architecture, a strategy simi-
lar to the fully connected layers in AlexNet [6] and VGGNet [13], was chosen
where the number of neurons is reduced in each successive hidden layer until
the output layer. This allows a gradual build-up of a more and more abstract,
high level features from lower level features. The rectified linear unit which is
defined as ReLU(z) = max(0, z) was applied as the activation function for each
hidden layer neuron. A categorical output layer consisting of a single neuron
per category was implemented via the softmax activation function defined as
Sj(z) = ezj∑2

k=1 ezk
; j = 1, 2. During training a batch size of 10 and learning

rate of 0.001 was chosen based on empirical evidence. The ADAM optimization
method [5] was used with β1 = 0.5, β2 = 0.999, and ε = 1e−08 and weights were
initialized to small random values near zero. In each validation test, early stop-
ping with look ahead was employed, i.e. training was stopped when the network
showed no improvement in validation accuracy for 15 epochs. To perform model
selection, 72 subjects were randomly selected from the 92 to use as the training
set while the remaining 20 subjects were held out as the test set and not used
during model selection. Both training and test sets were balanced. The training
set was further divided into training and validation via 5-fold cross-validation.
The evaluated models and their average cross validation accuracy is shown in
Table 2. These models include less deep architectures which underfit (model 16-
8-2) and very deep architectures which overfit (model 16-16-8-8-8-4-4-4-2). The
winning architecture and the DNN model that we propose is further illustrated
in Fig. 2. The model contains 5 dense hidden layers, where 16 neurons were used
in the first hidden layer, 8 neurons in the second and third and 4 neurons in the
fourth and fifth layers. After selecting the proposed architecture, it was trained
on the full training set and evaluated on the unseen held-out test set.

Table 2. Comparison of fully connected neural network architectures evaluated using
5-fold cross validation with 58 training subjects/fold and 14 test subjects/fold.

Model 5-fold cross-validation accuracy (%)

16-8-2 69.1 (±8.1)

16-16-8-2 75.9 (±14.9)

16-16-8-8-2 69.3 (±11.0)

16-16-8-8-4-2 74.8 (±8.9)

16-16-8-8-4-4-2 76.3 (±9.9)

16-16-8-8-4-4-4-2 70.5 (±6.2)

16-16-8-8-8-4-4-4-2 65.0 (±9.7)
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Fig. 2. Our proposed fully-connected deep neural network for the classification of cau-
date CBF into perfusion level based on clinical measures. Green neurons represent
the input layer, while blue neurons constitute the hidden layers and red neurons are
the output neurons which use softmax activation function to compute a categorical
distribution. (Color figure online)

4 Results

4.1 Performance Comparison of the Learning Models

The proposed model achieves an accuracy of 90% with a sensitivity of 100% and
specificity of 80%. Table 3 shows a comparison of the performance of the proposed
model to widely used classical machine learning classifiers. The proposed DNN
model outperforms the other algorithms in nearly all performance metrics. While
the random forest had slightly higher specificity, it yielded inferior F1 score,
AUC, accuracy, and sensitivity.

4.2 Statistical Significance of the Proposed Model

The null hypothesis was that the DNN cannot learn to predict the perfusion
level based on the training set. The test statistic chosen was the accuracy on the
unseen test set of 20 samples. The permutation testing procedure was as follows:

Table 3. Comparison of the performance of different classifiers on the held out test
set. Each model is trained on 72 subjects and tested on 20 subjects.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) F1-score (%)

proposed DNN 90.0 100.0 80.0 90.0 90.9

Linear-SVM 80.0 90.0 70.0 80.0 81.8

RBF-SVM 80.0 90.0 70.0 80.0 81.8

Extra Trees 80.0 90.0 70.0 80.0 81.8

Random Forest 85.0 80.0 90.0 85.0 84.2

Adaboost 80.0 90.0 70.0 80.0 81.8

Gradboost 70.0 80.0 60.0 70.0 72.7
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1. Repeat R = 1000 times:
a. Randomly permute the N perfusion measures over the N diabetes feature
vectors.
b. Compute the value of the test statistic for the current permutation.

2. Construct an empirical probability distribution function (PDF) of the test
statistic.

3. Compute the p-value of the test static without permutation.

The PDF for the accuracy test statistics are shown in Fig. 3. Upon evaluation
the proposed model achieved statistically significant reliability; the probability
of observing a classifier with higher accuracy than the proposed model is <1%
(p = 0.000999). Thus with a significance level of α = 0.01, we reject the null
hypothesis in factor of the alternative hypothesis that the model has learned to
predict the perfusion level with small expected error.

Fig. 3. Probability distribution function (PDF) from permutation analysis for the pro-
posed DNN model. The red line indicates the classification accuracy obtained by the
model.

5 Discussion

Our study found the caudate to be the structure whose blood perfusion is most
impacted by diabetes. This is a noteworthy finding because the caudate is a
structure vital for optimum brain health. The caudate is located within the
dorsal striatum of the basal ganglia, and is associated with motor processes as
well as cognitive functions including procedural learning and associative learning
[8]. It is also one of the structures comprising the reward system [16].

Previous studies [4,10,12,17] have shown that the structure of the caudate
nucleus, particularly the right caudate is significantly impacted by T2D. Peng
et al. [10] reported a significant reduction of gray matter volume in the caudate
in patients with T2D compared to normal controls. A similar study in pediatric
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population [12] showed caudate nucleus volume was significantly reduced in T2D
patients compared to non-diabetic controls. Zhang et al. [17] found an associa-
tion between higher plasma glucose (common in diabetics) and the shape of the
caudate. Moreover, Hsu et al. [4] discovered a significant association between
diabetes duration and white matter microstructural properties such as mean
diffusivity in several brain regions including the right caudate. These comple-
mentary studies that associate caudate structural changes with T2D, corroborate
our finding that T2D impacts blood perfusion in the caudate nucleus.

6 Conclusions

In this paper, we quantify the association between T2D-related measures and
brain perfusion. We propose a fully connected deep neural network to classify
the perfusion in caudate into low and high categories based on 16 diabetes, renal,
cardiovascular and demographic measures. The proposed model outperforms all
the deep learning and classical machine learning models tested, achieves a classi-
fication accuracy of 90%, 100% sensitivity, and 80% specificity, and permutation
testing shows the model to have statistically significant reliability.
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