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ABSTRACT

This work addresses the challenging problem of parsing 2D radiographs into salient anatomical regions such as
the left and right lungs and the heart. We propose the integration of an automatic detection of a constellation
of landmarks via rejection cascade classifiers and a learned geometric constellation subset detector model with
a multi-object active appearance model (MO-AAM) initialized by the detected landmark constellation subset.
Our main contribution is twofold. First, we propose a recovery method for false positive and negative landmarks
which allows to handle extreme ranges of anatomical and pathological variability. Specifically we (1) recover
false negative (missing) landmarks through the consensus of inferences from subsets of the detected landmarks,
and (2) choose one from multiple false positives for the same landmark by learning Gaussian distributions for the
relative location of each landmark. Second, we train a MO-AAM using the true landmarks for the detectors and
during test, initialize the model using the detected landmarks. Our model fitting allows simultaneous localization
of multiple regions by encoding the shape and appearance information of multiple objects in a single model. The
integration of landmark detection method and MO-AAM reduces mean distance error of the detected landmarks
from 20.0mm to 12.6mm. We assess our method using a database of scout CT scans from 80 subjects with widely
varying pathology.

Keywords: automatic landmark localization, organ localization, image parsing, radiograph, active appearance
model, rejection cascade

1. INTRODUCTION

Parsing anatomical images entails the identification of scan content and localization of salient structures. Fully
automated parsing is a critical first step that facilitates subsequent finer scale analyses, such as precise segmen-
tation. Our goal is to enable the automatic parsing of 2D radiographs from ubiquitous routine clinical scans. We
hypothesize that the integration of anatomical landmark subset detection and multi-object active appearance
models which learn complementary local information and different global information will be well suited to the
task and will improve parsing as measured by refined landmark extraction accuracy. We further hypothesize
that both false positive as well as false negative landmarks can be corrected by learning a geometric landmark
constellation model for subsets of landmarks across a training database. Our database consists of 80 subjects
from whom a 2D anterior-posterior projection scout image was acquired with a computed tomography (CT)
scanner. The subjects vary in age (18 to 75 years), gender, and have widely variable pathology including obesity,
lung cancer, cardiomyopathy, and liver diseases. Additional pathological variability includes metallic implants:
cardiac stents, hip and knee implants, vertebrae screws and cardiac pacemakers. These images gathered from
multiple clinical sites have been acquired with widely variable protocols, including large variation in the Z range
(body coverage) included in the scan, with image dimensions from 219 to 1357mm in height and 484mm in width.
Representative images are shown in Fig. 1.

Landmark detection has been used to previously to parse radiographs1 however false negatives are not inferred
nor are the detections refined with an active appearance model. We show that these steps substantially improve
accuracy. Methods for 3D CT volume parsing based on landmark detection have been presented.2,3 In2 landmark
detections are refined by a search over exemplar cross-correlation maps while in3 detections are refined by an
active shape model (ASM). Neither is directly applicable to radiographs where projective image formation causes
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multiple structures to overlap confounding direct application of ASMs and where non-Hounsfield pixel intensities
render cross-correlation maps problematic. Lastly, compared to other SIFT and part-based parsing methods, 4

our method directly models the relationship between detections and the global appearance variation via the
MO-AAM.

Figure 1. Scan variability. Scan range variability: (a) full body, (b,i) chest+abdomen, (d,f,h) chest through pelvis, (c,e,g)
chest. Pathological variability includes: (a,c,e,d) implants, (i,b,h) obesity and lung disease. Imaging variability: (b,c) low
and high contrast.

2. METHODS

Our method consists of two steps. First, a discriminative+generative landmark and constellation subset detection
model is applied, which provides initial locations of salient landmarks. Then, an active appearance model
approach is applied, in which both the shape and the appearance information of multiple organs and their
relative context are encoded in a single model.

2.1 Landmark Detection

We adapt the discriminative rejection cascade classifier framework5 to detect anatomical landmarks in radio-
graphs. One rejection cascade classifier is independently trained for each landmark via supervised learning. Our
cascades are built using Gentle Adaboost6 for feature selection and classification. Each cascade is then applied
as a sliding window classifier to determine if and where a particular landmark is present in a novel image.

To train the detectors, the images are annotated with landmarks manually as shown in Fig. 2(a), including
lung landmarks: lower corner (3,8), top of diaphragm (2,9), lung left side (17) and right side (18), intersection
of top rib with lung boundary (4,7), top-left point for left lung (19), and top point (5,6); and heart landmarks:
corner of heart in right lung (1), mid-heart in right (14) and left (10) lung, top of heart in right (13) and
left lung (11), bottom of heart along spine (15, 16) and sternum just above heart (12). To define positive
patches, square patches are cropped from each image for each landmark that are large enough to include visible
anatomical structure. To define negative patches, square patches not overlapping the positive exemplar are
randomly cropped. Features are computed using an extended set of Haar templates, shown in Fig. 2(b), by
computing the difference of the sum of pixel intensities in the black sub-rectangle(s) and the sum of the pixels
in the white sub-rectangle(s).
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Figure 2. (a) Training landmarks for approximate regions of right lung (green), left lung (blue) and heart (red). (b)
Haar features include (a-d) edge features, (e-h) line features, (i) diagonal line feature (j-k) center surround, (c) Rejection
cascade.

We build a rejection cascade, as illustrated in Fig. 2(c), such that each cascaded stage achieves a high true
positive rate of 99.5% with a reasonable false positive rate of 50%. The first stage uses all of the positives and
negatives. Subsequent stages are trained using examples which pass through all previous stages (classified as
positive). Stages are appended until an overall true/false positive rate is achieved or a maximum number of
stages (14) is reached.

Applying the set of individual discriminative landmark detectors described above yields a set of candidate
detections, C. To correct false negative and positive candidates we build a generative model of the geometric
configuration of the landmarks. Given our complete set of landmarks, S, (Fig 2(a)) for every subset, si ⊂ S,
of two distinct landmarks, we learn the parameters, μi and Σi of the multi-variate Gaussian distribution for a
third landmark, q 6∈ si across the set of training images using maximum likelihood estimation.

For a landmark t with multiple candidate detections, denoted D = {dj} ⊂ C, we retain only the single
candidate d∗ with the lowest uncertainty estimated by its median Mahalanobis distance from the expected
location of each size-2 subset, ck, of distinct landmark candidates in S \ t. That is ck ⊂ C and ck is comprised of
two candidates ck = {cm1 , cm2} where cm1 is a candidate for landmark `1 and cm2 is a candidate for landmark
`2 while `1, `2 ∈ S \ t, and `1 6= `2.

To further facilitate subsequent processing we also use our model to infer missing landmarks. Assuming
normal basic human anatomy (two lungs and a heart), missing landmarks are those not found in an image by
our detectors. Given that C is the set of candidate detections, and denoting the set of landmarks spanned by C
as L, then the missing landmarks are M = S \ L. For each missing m ∈ M , we estimate its location, x, based
on predictions from the detected candidates. For each subset ck ⊂ L of 2 candidates for distinct landmarks, we
infer one predicted location x using the mean offset, μ, from ck learned from the training data. We estimate the
final location using the trimmed mean of the central 50% for each element of all the predicted locations of m.

2.2 Multi-object Active Appearance Model (MO-AAM)

Active appearance model (AAM) based approaches have been applied for many computer vision applications.7,8

We adapt the AAM to localize multiple organs based on our initial landmark detections. A single model is
constructed encoding the shape and appearance information for both lungs and heart, which allows simultaneous
localization of multiple regions. Our AAM approach has two parts: model learning and model fitting. In
model learning, one shape model and associated appearance model are trained for the multiple objects based
on the manually-labeled radiographs. Our model vertices are the same landmarks used to train the landmark
detectors in Section 2.1. Given n landmarks for each training image, the shape is represented by vector s =
[x1, y1, x2, y2, ∙ ∙ ∙ , xn, yn]T , where (xi, yi) is the coordinate of the ith landmark. The shape model is then defined
by a 2n dimensional Gaussian distribution of landmarks. After applying a Principal Component Analysis (PCA),
any shape can be represented by s = s0 +

∑n
i=1 pisi, where s0 is the mean shape, si is the ith shape basis vector

and pi is the corresponding shape coefficient. Fig. 3(a) shows the trained shape model.

After the shape model is trained, a warping function W (x, y; p) is defined, which takes the pixel (x, y) in
the mean shape s0 and maps it to the location W (x, y; p) in the image observation based on the learned shape
coefficients p = [p1, p2, . . . , pn]T . Given the learned shape model, each training image is warped to the mean
shape based on the above warping function. A second PCA analysis is then applied for transformed appearances
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Figure 3. The mean and top 5 basis vectors of (a) the shape model and (b) the appearance model sequenced by corre-
sponding vector coefficients.

from all training images. Any appearance A can be represented by A(x) = A0(x)+
∑m

i=1 λiAi(x), where x is the
set of all pixel coordinates inside the mean shape s0, A0 is the mean appearance, Ai is the ith appearance basis
vector and λi is the corresponding appearance coefficient. Fig. 3(b) illustrates the trained appearance model.

In the model fitting step, we apply the learned shape and appearance model to fit the test radiographs. This
is achieved by finding the optimal shape and appearance coefficients such that the difference between current
appearance estimation and the target image is minimized. We initialize the MO-AAM’s vertices to the detected
landmarks, then fit the model by minimizing the expression

∑

x

∥
∥
∥
∥
∥
A0(x) +

m∑

i=1

λiAi(x) − I(W (x; p))

∥
∥
∥
∥
∥

2

(1)

with respect to the shape coefficients p = [p1, p2, . . . , pn]T and appearance coefficients λ = [λ1, λ2, . . . , λm]T .
Here I(W (x; p)) denotes the warped image observation and the expression defines the squared error between the
synthesized appearance instance and the warped observation.

The optimization can be solved by the Simultaneous Inverse Compositional method (SIC).9 Compared to the
classical gradient descent based optimization, the key idea of SIC method is to change the role of appearance
model and the image observation, which allows the pre-computation of the time-consuming steps for parameter
estimation while still retaining the fitting quality.

3. EXPERIMENTS AND RESULTS

The proposed method was validated on 80 radiographs using a 4-fold cross validation with for each fold, 60
datasets used for training and remainder for testing. In qualitative evaluation we observe that our landmark
detection method handles the extreme variability seen in clinical scans including field of view variations (Fig.
4(a-c) and anatomical and pathological variations (dense lungs, Fig. 4(b), obesity, Fig. 4(c), multiple implants
Fig. 4(a), as well as healthy subjects Fig. 4(e)). Ground truth landmarks are dark blue while our method’s
detections are in green and yellow. In total, 145 cases of multiple detections per landmark (false positives)
were corrected. The candidate selected from the multiple detections was 15.6mm closer to the ground truth
on average than the next best candidate. In total, 128 missing (false negative) landmarks were recovered using
the constellation model with a mean distance error of 20.1mm. Examples of missing landmarks are shown in
light blue. Including the 1392 detected landmarks, the overall mean landmark distance error of the landmark
detection stage is 20.0mm. This provides an excellent initialization for our MO-AAM.
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Figure 4. Landmark detection results. Automatically detected landmarks in green and yellow, inferred landmarks in
cyan, manually identified landmarks (ground truth) in blue. Proposed method handles: (a) large field of view scan with
pacemaker and knee implant (b) lung disease and (c) obese subjects. (d-f) Close-up of detections in three additional
subjects.

The MO-AAM fitting results are shown in Fig. 5, with initial mesh from landmark detections in black dashed
lines and final fitting results in light blue. Approximate regions for right and left lungs and heart are indicated
by green, blue and red lines, respectively. We observe significant improvement of landmark detections (arrows)
due to the incorporation of global shape and appearance.

(a) (b) (c) (d)

Figure 5. Typical examples of automatic organ localization results for the right lung (green), the left lung (blue) and the
heart (red). Both initial landmark detection results (black dash) and AAM model fitting results (cyan dash) are shown.

The mean distance error between the ground truth and each landmark across the 80 test images are shown
in Fig. 6. Red bars show distance error using landmark detection, blue bars show error after MO-AAM fitting.
Errors are significantly reduced for through the MO-AAM fitting; overall the mean distance error is reduced
from 20.0mm to 12.6mm.

4. CONCLUSIONS

In this work we address the core task of parsing radiographs into salient structures. We learn local models
of appearance and geometry using rejection cascade landmark detectors and global models of geometry using
landmark constellation subset models. Meanwhile, we construct a multi-object AAM model, which learns global
shape and appearance information for multiple regions jointly. We show how to use the constellation model for
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Figure 6. Combining landmark detection and MO-AAM reduces landmark distance error.

false positive and negative recovery which enables handling anatomical and pathological variability found in the
clinic. Lastly, we describe how to fit our MO-AAM guided by the landmarks for simultaneous localization of
multiple regions and show how the combination reduces overall distance error from 20.0mm to 12.6mm.
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