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SYSTEMS AND METHODS FOR IMAGE 
SEGMENTATION USING TARGET IMAGE 

INTENSITY 

FIELD 

[0001] Embodiments relate generally to image segmenta 
tion, and more particularly to, identifying regions of interest 
for use in medical image analysis. 

BACKGROUND 

[0002] Image segmentation is often used to identify regions 
of interest for use in medical image analysis. In particular, 
image segmentation is used to segment structures from the 
background and is often used as a ?rst step for medical image 
analysis, such as for visualization, quantitative image analy 
sis, and image guided intervention. 
[0003] Image segmentation can be dif?cult to perform 
because of the large variability of shape and appearance of 
different structures, including the lack of contrast between 
adjacent or neighboring structures. Known image segmenta 
tion methods are generally divided into local image-based 
approaches and atlas-based approaches. For example, image 
based approaches segment based on image cues including 
intensity, gradient, and/or texture. Image based methods use 
different models that perform generally well when structures 
of interest have prominent boundaries and the intensities of 
neighboring structures are different. However, these methods 
often perform poorly when these conditions are not met. 
While prior anatomical knowledge might help alleviate such 
limitations it is dif?cult to incorporate this information into 
image-based approaches especially information about multi 
structure segmentation. 
[0004] Atlas-based approaches rely largely on prior knowl 
edge about the spatial arrangement of structures. These 
approaches typically include ?rst registering one or more of 
the images (atlases) to the subject image target, so that the 
manual segmentations from the atlas(es) can be propagated 
and fused. Compared to image-based approaches, these 
methods incorporate anatomical knowledge for improved 
performance, but are limited by large anatomical variation 
and imperfect registration. 
[0005] Multi-atlas based methods have been a trend for 
robust and automated image segmentation. In general, these 
methods ?rst transfer prior manual segmentations, i.e. label 
maps, on a set of atlases to a given target image through image 
registration. The multiple label maps are then fused together 
to produce segmentations of the target image, by way of two 
utilized fusion strategies through voting strategy or statistical 
fusion, e.g. Simultaneous Truth and Performance Level Esti 
mation (“STAPLE”), an algorithm for the validation of image 
segmentation. Different from most voting-based methods, 
STAPLE does not assume the atlases perform equally well on 
the target image. Instead, the atlas labeling performance lev 
els for the structures of interest are modeled and incorporated 
into a probabilistic framework which is solved for the true 
segmentation. STAPLE simultaneously estimates the true 
segmentation and the label map performance level, but has 
been shown inaccurate for multi-atlas segmentation because 
it is determined on propagated label maps and not on the 
target image intensity. This makes STAPLE more robust to 
anatomical variation between the atlas images and the target 
image, advantageous over majority voting. STAPLE (as well 
as voting strategy), however, blindly fuses the labels without 
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considering target image intensity information, permitting 
errors especially at the region boundaries. 
[0006] In further explanation, STAPLE fuses labels based 
on the propagated atlas labels without considering the target 
image. Therefore, when the target image exhibits large ana 
tomical variation from the atlas images, the registration step 
may consistently fail on certain structures and STAPLE will 
not work. In addition, STAPLE is less accurate along struc 
ture boundaries. 
[0007] Weighted fusion methods have also been proposed 
to improve performance where the segmentation fusion is 
weighted based on the intensity similarity between the target 
and the atlas images. However, information about structure 
intensity and contour that is speci?c to the subject’s anatomy 
is not used, which makes it dif?cult to apply these methods to 
subjects with large anatomical differences from the atlases. 
Other methods have also been proposed and include an adap 
tive atlas method that allows large structure variation based 
on target image intensities. However, adaptive atlas methods 
do not consider structure boundary information, which means 
these methods cannot discriminate different structures that 
have similar intensities. Still other proposed methods use 
spectral label fusion that divides the target image into regions 
based on image intensities and contours, followed by voting 
on the regions using an atlas-based approach. These methods, 
however, are usually limited to a single anatomical region and 
would be difficult to extend to segment multiple regions 
simultaneously. 
[0008] Thus, known segmentation methods suffer from dif 
ferent drawbacks as a result of using such image-based 
approaches or atlas-based approaches. Characterizing the 
performance of image segmentation poses an ongoing chal 
lenge, especially given the limited accuracy and precision 
during segmentation. Furthermore, interactive drawing of 
desired segmentation by human raters and performance by 
algorithmic raters creates unknown variability, performance 
of which is dif?cult to quantify because of the dif?culty in 
obtaining or estimating a known true segmentation for clini 
cal data. The following sets forth a new method and system 
that addresses these de?ciencies. 

SUMMARY 

[0009] In one embodiment, a non-transitory computer 
readable storage medium for segmenting an image using a 
processor is provided. The non-transitory computer readable 
storage medium includes instructions to command the pro 
ces sor to obtain one or more target images, obtain one or more 

propagated label probabilities for the one or more target 
images, and segment the one or more target images using a 
cost function of a deformable atlas model. The non-transitory 
computer readable storage medium further includes instruc 
tions to command the processor to identify segmented struc 
tures within the one or more target images based on the 
segmented target images. 
[0010] Embodiments disclosed include a non-transitory 
computer readable storage medium for segmenting an image 
using a processor, the non-transitory computer readable stor 
age medium including instructions to command the processor 
to: obtain a plurality of weighted images, reserving at least 
one weighted image as a target image, and using a remaining 
portion of the plurality of weighted images as atlas images in 
a multi-atlas segmentation; provide at least one set of labels 
per atlas image wherein the labels are in an image- space of the 
target image; register the atlas images to the target image by 
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aligning the labels in the image-space of the target image; and 
create one or more sets of a segmented target image by way of 
label fusion using intensity data of segmented structures 
de?ned therein. 
[0011] In one aspect, the non-transitory computer readable 
storage medium registers the atlas images to the target image 
using symmetric diffeomorphic normalization (SyN) meth 
ods in Advanced Normalization Tools (ANTs). In another 
aspect, the non-transitory computer readable storage medium 
provides instructions to utilize intensity-based simultaneous 
truth and performance level estimation (iSTAPLE).Any class 
of registration may be utilized, however, without limitation, 
including linear and non-linear based registration, deform 
able, volume-based, landmark-based, among others. 
[0012] Embodiments herein may vary in scope to include 
multi-atlas based methods that facilitate automated image 
segmentation. Multiple label maps are fused together to pro 
duce segmentations of the target image through voting strat 
egy or statistical fusing, while simultaneously considering the 
target image intensity. Such embodiments can be modi?ed to 
estimate intensity pro?les of structures of interest as well as 
the true segmentation and atlas performance level. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0013] FIG. 1 is an illustration of the invention incorporat 
ing the target intensity image in accordance with one embodi 
ment. 

[0014] FIG. 2 demonstrates whole-brain segmentation in 
one embodiment: 

[0015] FIG. 2A illustrates from left to right (i) one coronal 
slice of the T1 weighted image, (ii) the ground truth, (iii) the 
segmentation results of iSTAPLE, and (iv) the segmentation 
results of STAPLE. 
[0016] FIG. 2B illustrates the ground truth, iSTAPLE 
results, and STAPLE results on the two zoomed regions (1) 
and (2) as labeled in FIG. 2A. 
[0017] FIG. 3 depicts the mean Dice coef?cients of 
STAPLE and iSTAPLE methods on different brain structures 
in accordance with embodiments of the invention. 
[0018] FIG. 4 is a schematic in one embodiment of 
iSTAPLE for atlas-based segmentation. 
[0019] FIG. 5 illustrates one embodiment of multi-atlas 
based label propagation from FIG. 4. 

DETAILED DESCRIPTION 

[0020] Various embodiments will be better understood 
when read in conjunction with the appended drawings. To the 
extent that the ?gures illustrate diagrams of the functional 
blocks of various embodiments, the functional blocks are not 
necessarily indicative of the division between hardware cir 
cuitry. Thus, for example, one or more of the functional 
blocks (e.g., processors, controllers, or memories) may be 
implemented in a single piece of hardware (e.g., a general 
purpose signal processor or random access memory, hard 
disk, or the like) or multiple pieces of hardware. Similarly, 
any programs may be stand-alone programs, may be incor 
porated as subroutines in an operating system, may be func 
tions in an installed software package, and the like. It should 
be understood that the various embodiments are not limited to 
the arrangements and instrumentality shown in the drawings. 
[0021] As used herein, the terms “system, unit,” or “mod 
ule” may include a hardware and/or software system that 
operates to perform one or more functions. For example, a 
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module, unit, or system may include a computer processor, 
controller, or other logic-based device that performs opera 
tions based on instructions stored on a tangible and non 
transitory computer readable storage medium, such as a com 
puter memory. Alternatively, a module, unit, or system may 
include a hard-wired device that performs operations based 
on hard-wired logic of the device. The modules or units 
shown in the attached ?gures may represent the hardware that 
operates based on software or hardwired instructions, the 
software that directs hardware to perform the operations, or a 
combination thereof. 

[0022] As used herein, an element or step recited in the 
singular and proceeded with the word “a” or “an” should be 
understood as not excluding plural of said elements or steps, 
unless such exclusion is explicitly stated. Furthermore, refer 
ences to “one embodiment” are not intended to be interpreted 
as excluding the existence of additional embodiments that 
also incorporate the recited features. Moreover, unless explic 
itly stated to the contrary, embodiments “comprising” or 
“having” an element or a plurality of elements having a par 
ticular property may include additional such elements not 
having that property. 
[0023] Various embodiments provide systems and methods 
for single and multi-structure segmentation. In particular, an 
embodiment discloses the use of Intensity Simultaneous 
Truth and Performance Level Estimation (“iSTAPLE”) that 
combines target image intensity into a maximum likelihood 
estimate (MLE) framework, as used in STAPLE, to take 
advantage of both intensity-based segmentation and statisti 
cal label fusion based on atlas consensus and performance 
level. The MLE framework is then solved using a modi?ed 
Expectation-Maximization (EM) algorithm to simulta 
neously estimate the intensity pro?les of structures of interest 
as well as the true segmentation and atlas performance level. 
Unlike other methods, iSTAPLE does not require the target 
image to have the same image contrast and intensity range as 
the atlas images, which greatly extends the use of atlases. 
[0024] Various embodiments of the invention provide a set 
of atlases, each of which includes a structural image and a 
corresponding manual segmentation of structures of interest. 
An atlas comprises a subject’s intensity image and its manu 
ally segmented label mask. The target image to be segmented, 
can be acquired with different imaging parameters than the 
atlas images, and even the atlas images can have different 
intensity pro?les. Thus, the methods employed in the inven 
tion use the target intensity image in the MLE framework. 
Typically, the methods ?rst register the atlas images to the 
target image, propagate the manual segmentations, or labels, 
by applying the computed transformation, and then generate 
the segmentation results on the target image by fusing the 
propagated labels from the atlases. 
[0025] The label fusion method, iSTAPLE, extends 
STAPLE by incorporating the target intensity image into 
conventional STAPLE framework. As shown in FIG. 1, an 
image 100 depicts two touching structures 102, 104 with 
similar corresponding intensities on a background 101. 
Because of imperfect registration, the transformed label maps 
106, 108 (respectively) do not completely align with the 
actual structures 102, 104. Note: The outermost perimeter/ 
boundary of the left structure and the outermost perimeter of 
the right structure are designated by dotted lines 110, 112, 
respectively). The mis-labeled regions 115 around the bound 
aries with background have different intensity values and are 
corrected based on image intensity; while the boundary 
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between the two mislabeled central regions 117 are deter 
mined based on atlas consensus and performances using label 
fusion, i.e. STAPLE. 
[0026] Based on this observation, the iSTAPLE method 
integrates takes advantage of both intensity-based segmenta 
tion and STAPLE label fusion. Moreover, iSTAPLE inte 
grates into the MLE framework the intensity information 
based solely on the target image, negating the use or atlas 
images in label fusion and allowing application of multi-atlas 
segmentation methods to images with different modalities 
from the atlas images. For exemplary purposes, and not limi 
tation, experiments on whole brain segmentation have shown 
that iSTAPLE is more robust and produces better results that 
current segmentation methodologies. 
[0027] The iStaple Method 
[0028] As illustrated in FIG. 1, segmentation results along 
tissue boundaries are improved while compensating for ana 
tomical variation using the structure appearance information 
in the target image via the iSTAPLE method. The iSTAPLE 
method extends STAPLE by taking into account the target 
intensity image I and incorporating it into a probabilistic 
framework solved in a modi?ed Expectation-Maximization 
(EM) algorithm for multi-structure segmentation. 
[0029] Assuming I is independent to atlas labels D and 
performance parameters 6, the log likelihood function for 
iSTAPLE is expressed as: 

wherein I is the target intensity image, D is the propagated 
sets of atlas labels in the target image space, T is the true 
label(s) on the target image, and 6 is the set of parameters, 
including the performance level parameters and parameters 
for target structure intensity distributions. 
[0030] The conditional expectation function for iSTAPLE 
at iteration t is then: 

Equation 1 

Q(0 | 0m) = Ellog?D, T, 1|0) | D, I, 9%] Equation 2 

= Z logmm T. 1. 0mm T)f(T)] 
T 

[0031] Since propagated atlas label D is independent to the 
target image I, the conditional probability is written as: 

[0032] In the E-step, the weight function at voxel for 
iSTAPLE is written as: 

xi 

[0033] The new term de?ning the intensity distribution, 
f(Il-|Ti:s), as compared to the STAPLE method, models the 
probability that a voxel that belongs to the SM structure has an 
intensity of Ii. This enables iSTAPLE to take advantage of 
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appearance differences of different structures and results in 
more accurate segmentation along structure boundaries and 
in cases of large anatomical variation. For neighboring struc 
tures with similar intensity distributions, Wsim is largely 
determined by the atlas consensus and performance param 
eters, as similar in conventional STAPLE. 
[0034] Here, the intensity distribution f(Ii|Tl-:s), is modeled 
using Gaussian function. For exemplary purposes, and not 
limitation, shown as follows: 

Equation 5 

f(1i | Ti = S) = 

® indicates text missing or illegiblewhen ?led 

[0035] where [1.50) and of“) are the mean and variance of 
the target image for structure s, respectively. 
[0036] In the M-step, the parameters, 6“), us“), and of“), 
are computed by maximizing the conditional expectation 
function shown in Equation 2 above; 
[0037] 6“) is estimated as in the STAPLE method: 

Wit!) Equation 6 
0WD _ Znnijq’ 
1“ _ 2. WS’ 

[0038] p.50), and of“) are computed by: 

(My), 03(1)) : argmaXZ Wiplogfui I Ti : 5 Equation 7 
lisst . 

[0039] Thus, the following results: 

(f) _ Equation 8 
m _ 2, Wm 1. 

[is _ 2W1? ’ 

Equation 9 

[0040] In summary, the iSTAPLE algorithm, as imple 
mented into the system, can be characterized by the following 
steps: 

[0041] (1) Set kIO. Initialize 6(0). Initialize WSl-(O) as in 
Equation 4 above by assuming f (IilTl-Is):l. 

[0042] (2) Compute 60‘“) using Equation 6. 
[0043] (3) Compute usop'l) and 050‘“) using Equations 8 
and 9, respectively. 

[0044] (4) Compute WSl-(t) using Equation 4. 
[0045] (5) Iterate steps 2-4 until the algorithm converges 

or reaches a speci?ed number of iteration (as determined 
by a user). 

[0046] In one embodiment, the iSTAPLE method is used on 
whole brain segmentation using Internet Brain Segmentation 
Repository (IBSR) atlases. The IBSR comprises 18 healthy 
subjects with T1 weighted images; 32 brain structures are 
manually delineated on each image by experts and serve as 
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ground truth. In one method, leave-one-out experiments are 
performed for cross-validation. In one aspect, one image is 
selected as the target image, and the remaining 17 data images 
are used as the atlases in the multi-atlas segmentation. 

[0047] For each experiment, the atlas images are registered 
to the target image using Symmetric Diffeomorphic Normal 
ization (SyN) method in Advanced Normalization Tools 
(ANTs), and the labels in the atlases are propagated to the 
target image domain. After that, the target image is segmented 
through label fusion with both iSTAPLE and convention 
STAPLE methods. The segmentation results are then com 
pared to the ground truth using the Dice coef?cient, i.e. 

E uation 8 
Z )1; q 

#1" = i a 

2 W1? 
i 

2 E uation 9 
Z Wif’u; — A") q 

02(1) : 
i 

(1) 2 Wm 
i 

where X is the voxel set of ground truth, Y is the voxel set of 
the segmentation result, and H is the set cardinality. 
[0048] FIG. 2 shows the segmentation results on whole 
brain segmentation on one IBSR dataset 200. Visually, 
iSTAPLE provides improved segmentation of the boundaries 
between adjacent structures as compared to conventional 
STAPLE. In FIG. 2A, from left to right, one coronal slice 202 
of the T1 weighted image is shown, followed by the ground 
truth 204, the segmentation results of iSTAPLE 206, and the 
segmentation results of STAPLE 208. FIG. 2B illustrates the 
ground truth, iSTAPLE results, and STAPLE results on two 
zoomed regions that are labeled in FIG. 2A respectively, 
Region 1 and Region 2. For Region 1, the white matter con 
tour 214 is drawn on the ground truth 204 and overlayed on 
iSTAPLE results 206 and STAPLE results 208 to show the 
differences. Improved segmentation (e.g. 218, 219, 220, 221) 
and boundary delineation (e.g. 222, 224) are seen in the 
majority of structures (as depicted by arrows). 
[0049] The mean Dice coef?cients for the 18 experiments 
on the 32 brain structures are shown in FIG. 3 for quantitative 
comparison. Here, the results on the same structure at the left 
and right sides are shown together. Overall, iSTAPLE outper 
formed STAPLE methods especially on structures whose 
intensity distributions are different from their neighboring 
structures, e.g., ventricles and cortex. For subcortical struc 
tures (e.g., thalamus, caudate, puttaman, hippocampus, and 
amygdala), iSTAPLE performed slightly better, but with limi 
tations where the intensity distributions are close to their 
neighboring structures and thus intensity information for 
these structures is less effective. 

[0050] In one aspect, the Dice similarity coef?cient (DSC) 
is used as a statistical validation metric to evaluate the per 
formance of both reproducibility of manual segmentations 
and the spatial overlap accuracy of automated probabilistic 
fractional segmentation of magnetic resonance (MR) images. 
Other statistical metrics may be utilized as well to evaluate 
and prove the advantages of iSTAPLE as shown herein. 
[0051] At least one technical effect of various embodiments 
is improved image segmentation over conventional image 
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based or atlas -based segmentation methods. At least one tech 
nical effect of various embodiments is improved segmenta 
tion performance around the structure boundaries and a more 
robust segmentation for large anatomical variation. 
[0052] FIG. 4 is a schematic in one embodiment of the 
system 400 utilizing the method of label fusion with intensity 
distribution. The atlas-based segmentation system 400 uti 
lizes a target image 402 that is re?ned through a preprocess 
ing step 404. The preprocessing step may include an inhomo 
geneity correction, skull stripping, etc., as utilized to re?ne 
the target image 402. A set of atlases 412, each including an 
intensity image and a set of labels, proceeds through a multi 
atlas label propagation step 406, to register to the pre-pro 
cessed target image and propagate the sets of labels for the 
atlases 412. The label fusion process step 408 utilizes both the 
propagated sets of labels from multi-axis label propagation 
406 and the target image 402, via iSTAPLE, to produce seg 
mentation results 410. 
[0053] Aspects of the invention utilize iSTAPLE to deter 
mine which label (of the multiple labels per each voxel of an 
image) is the most likely label. The method of iSTAPLE 
de?nes a likelihood function 411 that incorporates both ana 
tomical knowledge of the structure spatial arrangement, by 
?tting anatomical maps onto the target image, in the form of 
propagated atlas label maps 406; and the structure appearance 
speci?c to the target image during optimization 413, in the 
form of intensity distribution functions for the structures to be 
segmented. This is different from conventional methods 
which do not consider structure appearance of a target image 
in the label fusion step. 
[0054] For example, after the anatomical maps are ?tted 
onto a labeled target image, multiple labels result at each 
voxel. Of all the labels, the likelihood function determines 
which is the most likely. The iSTAPLE label fusion step 408 
identi?es one label (the most likely label) per voxel on the 
segmentation map, while also taking structure appearance of 
the target image, including intensity distributions for each 
structure derived from the target image, into consideration. 
[0055] In one aspect of iSTAPLE, performance level 
parameters are utilized in the likelihood function, which 
describes the labeling performances of different atlases. In 
another aspect, the label performance parameter for an atlas 
captures how well the atlas correctly labels the structures. In 
addition, iSTAPLE utilizes the intensity distributions for each 
structure derived from the target image. The distribution can 
be modeled using parametric models, for example, Gaussian 
model or mixtures of Gaussian model, or non-parametric 
models, for example kernel density estimation or Parzen win 
dow, among others. The likelihood function is then optimized 
413 to segment the target image by computing the true label 
maps of the target image. This is performed using a modi?ed 
expectation-maximization algorithm that simultaneously 
computes the optimal performance level parameters and the 
structure intensity distribution functions. Other optimization 
methods can be applied as well. Depending on the selected 
models for the structure intensity distribution, the determina 
tion of optimal distribution functions, or optimization 413, 
can be used to determine the model parameters. For exem 
plary purposes, and not limitation, the mean u. and variance 02 
for a Gaussian model, or the probabilistic distribution func 
tion (pdf) when using the non-parametric model may be uti 
lized. In one embodiment, Equation 7, as described herein, 
implements an EM algorithm using a Gaussian model. Other 
models may be utilized, however, as determined by the user. 
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[0056] FIG. 5 illustrates a schematic of a multi-atlas based 
label propagation 500 for whole brain segmentation, as uti 
lized in the embodiment of the system 400. The multi-atlas 
images 502 are registered 504 with the processed target image 
506 to produce deformations 508. The label images 510 are 
then integrated with the deformations 508 to produce results 
512, where the deformations are applied to the label images. 
Such methodology may be applied to various anatomical 
structures, in partial or whole organ systems. 

[0057] Various embodiments of the system have encom 
passed the use of the label fusion method, herein called 
iSTAPLE, to extend the STAPLE method by incorporating 
the target intensity image into the statistical formulation of 
STAPLE. By considering the different appearances of differ 
ent structures, as well as taking advantage of statistical label 
fusion based on atlas consensus and performance level, 
iSTAPLE improves the label fusion results especially for 
structures with different appearance as their neighboring 
structures. Experiments performed on the brain segmentation 
on 18 IBSR datasets, and the demonstrated results, prove that 
iSTAPLE consistently outperforms the STAPLE method. 

[0058] Thus, the method can be varied and utilized in the 
imaging of various biological and non-biological structures 
so as to encompass one or more aspects of the iSTAPLE and 
imaging intensities. As shown in FIG. 2, both iSTAPLE and 
STAPLE did not perform well on certain regions of the brain, 
e.g., white matter, mainly because image registration did not 
perform consistently on these regions for different atlas 
images, and the intensity weighting in iSTAPLE did not make 
the correction. Thus, in other embodiments, other image cues 
are incorporated to include boundaries and textures that 
include difficult imaging areas, including for example, white 
matter regions. 

[0059] In the embodiments illustrated, the structure inten 
sity distributions are modeled using Gaussian. Other para 
metric methods, such as the mixture of Gaussian model, and 
non-parametric methods, such as Parzen window or kernel 
density estimation method, may be utilized to model the 
distributions more accurately. Such methods may be imple 
mented as designated by the user or as desired for particularly 
imaging techniques and the structures designated for imag 
mg. 

[0060] In various embodiments, the methodmay be applied 
to segment both normal and diseased structures. It should be 
appreciated that the various embodiments may be imple 
mented with different structures or organs. For example, the 
results described herein show that various embodiments per 
formed well particularly for brain. The various embodiments, 
however, can be readily extended to other applications, such 
as of atlas-based segmentation, e.g., prostate and heart. 

[0061] It should be noted that although the various embodi 
ments are described in connection with a multi-atlas 
approach, the various embodiments may be applied, for 
example, to probabilistic atlas approaches. It also should be 
noted that variations and modi?cations are contemplated, for 
example, to include other speed functions, including curva 
ture-based terms for smoothness. 

[0062] Accordingly, various embodiments provide image 
segmentation, wherein the resulting images may be used, for 
example, in medical diagnosis. The various embodiments 
may be implemented in connection with an MRI system 
which is used to acquire MRI data that is segmented to gen 
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erate images as described herein. Thus, the MRI system may 
be utilized, for example, to implement the method described 
herein. 
[0063] The various embodiments may be implemented in 
connection with different types of systems including a single 
modality imaging system and/or the various embodiments 
may be implemented in or with multi-modality imaging sys 
tems. The system is illustrated as an MRI imaging system and 
may be combined with different types of medical imaging 
systems, such as a Computed Tomography (CT), Positron 
Emission Tomography (PET), a Single Photon Emission 
Computed Tomography (SPECT), as well as an ultrasound 
system, or any other system capable of generating images, 
particularly of a human. Moreover, the various embodiments 
are not limited to medical imaging systems for imaging 
human subjects, but may include veterinary or non-medical 
systems for imaging non-human objects, luggage, etc. 
[0064] It should be noted that the particular arrangement of 
components (e. g., the number, types, placement, or the like) 
of the illustrated embodiments may be modi?ed in various 
alternate embodiments. In various embodiments, different 
numbers of a given module or unit may be employed, a 
different type or types of a given module or unit may be 
employed, a number of modules or units (or aspects thereof) 
may be combined, a given module or unit may be divided into 
plural modules (or sub-modules) or units (or sub-units), a 
given module or unit may be added, or a given module or unit 
may be omitted. 
[0065] It should be noted that the various embodiments 
may be implemented in hardware, software or a combination 
thereof. The various embodiments and/or components, for 
example, the modules, or components and controllers therein, 
also may be implemented as part of one or more computers or 
processors. The computer or processor may include a com 
puting device, an input device, a display unit and an interface, 
for example, for accessing the Internet. The computer or 
processor may include a microprocessor. The microprocessor 
may be connected to a communication bus. The computer or 
processor may also include a memory. The memory may 
include Random Access Memory (RAM) and Read Only 
Memory (ROM). The computer or processor further may 
include a storage device, which may be a hard disk drive or a 
removable storage drive such as a solid state drive, optical 
drive, and the like. The storage device may also be other 
similar means for loading computer programs or other 
instructions into the computer or processor. 

[0066] As used herein, the term “computer, controller,” 
and “module” may each include any processor-based or 
microprocessor-based system including systems using 
microcontrollers, reduced instruction set computers (RISC), 
application speci?c integrated circuits (ASICs), logic cir 
cuits, GPUs, FPGAs, and any other circuit or processor 
capable of executing the functions described herein. The 
above examples are exemplary only, and are thus not intended 
to limit in any way the de?nition and/or meaning of the term 
“module” or “computer.” 

[0067] The computer, module, or processor executes a set 
of instructions that are stored in one or more storage elements, 
in order to process input data. The storage elements may also 
store data or other information as desired or needed. The 
storage element may be in the form of an information source 
or a physical memory element within a processing machine. 
[0068] The set of instructions may include various com 
mands that instruct the computer, module, or processor as a 
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processing machine to perform speci?c operations such as the 
methods and processes of the various embodiments described 
and/ or illustrated herein. The set of instructions may be in the 
form of a software program. The software may be in various 
forms such as system software or application software and 
which may be embodied as a tangible and non-transitory 
computer readable medium. Further, the software may be in 
the form of a collection of separate programs or modules, a 
program module within a larger program or a portion of a 
program module. The software also may include modular 
programming in the form of object-oriented programming. 
The processing of input data by the processing machine may 
be in response to operator commands, or in response to results 
of previous processing, or in response to a request made by 
another processing machine. 

[0069] As used herein, the terms “software” and “?rm 
ware” are interchangeable, and include any computer pro 
gram stored in memory for execution by a computer, includ 
ing RAM memory, ROM memory, EPROM memory, 
EEPROM memory, and non-volatile RAM (NVRAM) 
memory. The above memory types are exemplary only, and 
are thus not limiting as to the types of memory usable for 
storage of a computer program. The individual components 
of the various embodiments may be virtualized and hosted by 
a cloud type computational environment, for example to 
allow for dynamic allocation of computational power, with 
out requiring the user concerning the location, con?guration, 
and/ or speci?c hardware of the computer system. 

[0070] It is to be understood that the above description is 
intended to be illustrative, and not restrictive. For example, 
the above-described embodiments (and/or aspects thereof) 
may be used in combination with each other. In addition, 
many modi?cations may be made to adapt a particular situa 
tion or material to the teachings of the invention without 
departing from its scope. Dimensions, types of materials, 
orientations of the various components, and the number and 
positions of the various components described herein are 
intended to de?ne parameters of certain embodiments, and 
are by no means limiting and are merely exemplary embodi 
ments. Many other embodiments and modi?cations within 
the spirit and scope of the claims will be apparent to those of 
skill in the art upon reviewing the above description. The 
scope of the invention should, therefore, be determined with 
reference to the appended claims, along with the full scope of 
equivalents to which such claims are entitled. In the appended 
claims, the terms “including” and “in which” are used as the 
plain-English equivalents of the respective terms “compris 
ing” and “wherein.” Moreover, in the following claims, the 
terms “?rst,” “second,” and “thir ,” etc. are used merely as 
labels, and are not intended to impose numerical require 
ments on their objects. 

[0071] This written description uses examples to disclose 
the various embodiments, and also to enable a person having 
ordinary skill in the art to practice the various embodiments, 
including making and using any devices or systems and per 
forming any incorporated methods. The patentable scope of 
the various embodiments is de?ned by the claims, and may 
include other examples that occur to those skilled in the art. 
Such other examples are intended to be within the scope of the 
claims if the examples have structural elements that do not 
differ from the literal language of the claims, or the examples 
include equivalent structural elements with insubstantial dif 
ferences from the literal languages of the claims. 
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What is claimed is: 
1. A non-transitory computer readable storage medium for 

segmenting an image using a processor, the non-transitory 
computer readable storage medium including instructions to 
command the processor to: 

obtain a plurality of images, reserving at least one image as 
a target image, and using a remaining portion of the 
plurality of images as atlas images in a multi-atlas seg 
mentation; 

provide at least one set of labels per atlas image within an 
image space of the atlas image; 

register the atlas images to the target image by way of 
computed transformations; 

propagate the sets of labels from the image spaces of the 
atlas images to an image space of the target image using 
the computed transformations to generate a propagated 
label map; and 

create a segmented target image by way of label fusion 
using intensity data of the target image and the propa 
gated label map. 

2. The non-transitory computer readable storage medium 
of claim 1, wherein the step of creating the segmented target 
image comprises intensity-based simultaneous truth and per 
formance level estimation (iSTAPLE). 

3. The non-transitory computer readable medium of claim 
2, wherein the step of creating the segmented target image 
utilizes a likelihood function in combination with an optimi 
zation of a cost function that combines one or more sets of the 

labels in the segmented target image with the intensity data 
from the target image. 

4. The non-transitory computer readable medium of claim 
3, wherein the instructions command the processor to per 
form an expectation-maximization (EM) algorithm to opti 
mize the cost function. 

5. The non-transitory computer readable medium of claim 
4, wherein the expectation-maximization (EM) algorithm is 
performed iteratively. 

6. The non-transitory computer readable storage medium 
of claim 1, wherein the plurality of images are weighted 
images by magnetic resonance (MR) contrast. 

7. The non-transitory computer readable storage medium 
of claim 1, wherein the step of registering, the atlas images are 
overlaid on the target image to simultaneously generate a 
propagated label map. 

8. The non-transitory computer readable storage medium 
of claim 7, wherein the step of registering comprises one or 
more classes of registration, including linear or non-linear, 
deformable, volume-based, and landmark-based registration, 
individually or in combination. 

9. The non-transitory computer readable medium of claim 
1, wherein the segmented target image comprises one or more 
structures having intensity distributions computed, and 
wherein the intensity distributions are utilized in said step to 
create said segmented target image. 

1 0. The non-transitory computer readable medium of claim 
9, wherein the intensity distributions are used to model dif 
ferences between the one or more structures. 

11. A system for image segmentation using target image 
intensity, the system comprising a processor to determine a 
likelihood function for intensity-based simultaneous truth 
and performance level estimation (iSTAPLE), wherein the 
processor compensates for anatomical variation during image 
segmentation and thereby integrates structure appearance 
information from a target image; and anatomical maps ?tted 
onto the labeled target image during multi-atlas propagation; 
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wherein said structure appearance information includes 
target image intensity to identify one label per voxel in a 
resulting segmentation map. 

12. The system of claim 11, Wherein the target image is 
selected for brain segmentation. 

13. The system of claim 11, Wherein the target image 
comprises one or more anatomical structures internal to a 

mammalian body. 
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