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Abstract—3D volumetric CT images hold the potential to 

become a rich source of information for 3D organ 

segmentation and far exceed that made available through 2D 

radiograph images. Acquiring and generating 3D volumetric 

images for scan preparation purposes, i.e. 3D scout, while 

delivering radiation dose equivalent to conventional 2D 

radiograph is challenging. We explore various acquisition 

parameters and post-processing methods to reduce dose of a 

3D scout while reducing the noise and maintaining the edge 

strength around the target organ. We demonstrated that 

similar edge strength and noise to the conventional dose CT 

scan can be achieved with 3D scout acquisition and post-
processing while being dose neutral to a 2D scout acquisition.  

Keywords— CT acquisition protocol; low dose; 3D scout; 

organ segmentation; IQ metric 

I.  INTRODUCTION  

Segmentation or extraction of organ boundaries from the 
2D radiograph preparatory scans, i.e. 2D scouts, has been 
explored before [1-3]. Due to overlapping nature of tissues 
projected onto a 2D scout, segmentation of adjacent soft 
tissue organs has proven to be very challenging. In a clinical 
setting, 3D helical acquisitions are often used to precisely 
localize target organs before the main scan but the radiation 
dose for such preparatory scans is quite high. In this paper, 
we propose a 3D volumetric preparatory scan, i.e. 3D scout, 
to segment target organs for scan planning while delivering 
radiation dose similar to conventional 2D scout.  

The dose from a conventional 2D scout acquisition is a 
small fraction of the dose from the main scan, typically 
0.4%-2%. Therefore, acquiring an ultra-low dose 3D scout 
delivering similar dose to conventional 2D scout while 
maintain image quality sufficient for organ segmentation is 
immensely challenging.  Reconstructed images from such a 
low dose acquisition contain high noise and image artifacts 
such as streaks. Consequently conventional edge and region 
based image segmentation methods [4-5] tend to yield low 
segmentation accuracy [6-8]. More advanced model based 
organ segmentation (MBS) methods hold greater potential to 
overcome some of these challenges, however even these can 
fail when the noise or streaks are prominent [9-11].   

In this work, we explored various ultra-low dose 
acquisition and post-processing strategies to reduce the 
radiation dose of a 3D scout. To evaluate each strategy, we 
defined the image quality metrics that reflect organ 

„segmentability‟, i.e. ability to segment, rather than using a 
specific segmentation approach so that our experiments are 
largely independent of the specific organ segmentation 
algorithm. Though multiple body regions such as head, chest 
and abdomen are routinely scanned, we focus on the 
abdomen and specifically the liver organ since it is one of the 
most challenging organs due to its shape complexity, 
intersubject shape variability, and low boundary contrast. 
However it is straightforward to extend our work and 
methodology to other organs and applications.  

 

II. METHODOLOGY  

To achieve ultra-low dose for 3D scout, we proposed two 
low dose acquisition methods and three post-processing and 
reconstruction approaches.  

For low dose acquisition, we reduced the dose of 3D 
scout by reducing mA and by reducing the number of views 
while maintain same exposure time per view, i.e. by 

Table I. Key DOE parameters 

DOE mA 
rotation 

speed 
mAs 

# of 

views 
dose% 

 

Without noise reduction techniques  

1 2000 0.4 800 1000 N/A Ground Truth 

2 600 0.4 240 1000 100% Baseline 

3 240 0.4 24 250 10% Pulsed Acq. 

4 240 0.4 12 125 5% Pulsed Acq. 

5 120 0.4 12 250 5% Pulsed Acq. 

6 120 0.4 6 125 2.5% Pulsed Acq. 

7 60 0.4 6 250 2.5% Pulsed Acq. 

8 60 0.4 3 125 1.25% Pulsed Acq. 

Noise Reduction techniques  

9 60 0.4 3 125 1.25% Detector rebin(4) 

10 60 0.4 3 125 1.25% Detector rebin(9) 

11 60 0.4 3 125 1.25% Smooth Kernel 

12 60 0.4 3 125 1.25% Fast Iter. Recon 

Combination of noise reduction techniques  

13 60 0.4 3 125 1.25% Kernel+D.Rebin 

14 60 0.4 3 125 1.25% Kernel+Rebin+Iter 

Electronic Noise Reduction  

15 60 0.4 12 250 5% 2x exposure 

16 60 0.4 6 125 2.5% 2x exposure 

17 60 0.4 3 62 1.25% 2x exposure 

 



emulating pulsed acquisition. Detailed acquisition 
parameters in our design of experiments (DOE) are shown in 
Table 1, DOE1-DOE8. To simulate ultra-low dose 3D scout, 
we use CATSIM with the anthropomorphic xCAT phantom 
[12-13]. A 3rd generation axial scan mode is adopted for 
simplicity and 8 rows of detectors are positioned over the 
liver region.   

We simulated three denoising and reconstruction 
techniques: detector rebinning, smooth reconstruction kernel 
and fast iterative reconstruction algorithm such as ASIR, 
shown in Table 1, DOE9-14. Since organ segmentation 
algorithms mostly utilize the gradient information along the 
boundary, spatial resolution becomes less critical for the 
success. First, we proposed 2 by 2 and 3 by 3 detector 
rebinning approaches where the detector cells in neighboring 
rows and columns, 4 pixels and 9 pixels respectively, are 
combined into one effective cell. Second, since filter kernels 
for the FBP type reconstruction algorithms can be tuned to 
yield smooth and less noisy images, we select the smoothest 
reconstruction kernel available which can be aggressively 
modified further to achieve more smoothing in future. 
Finally, we emulated fast iterative reconstruction which 
typically has 50% noise reduction capability by simulating 
multiple acquisitions at same location with random noise 
seeds and averaging those runs.   

Since electronic noise in CT acquisition sometimes 
dominates overall noise characteristic and makes it difficult 
to de-noise, we additionally simulated acquisitions with 
prolong exposure and compared the difference, shown in 
Table 1, DOE15-17.   

All images are reconstructed with conventional FBP 
reconstruction algorithm with 1mm by 1mm by 0.625mm 
voxel size. The DFOV is 360mm and scan time per 
revolution is 0.4s.  We simulated a noiseless scan, shown in 

Table 1, DOE1 and a conventional main scan with 240mAs, 
shown in Table 1, DOE2.  The dose percentage shown in the 
last column in Table 1 was computed relative to DOE2, the 
conventional main scan.  

We devised two image quality metrics for organ 
segmentability. The first metric measures the noise at the 
interior portion of liver using 2cm by 2cm rectangular region 
of interest (ROI), shown as dotted box in Figure 1(a). The 
organ interior noise σ is expressed as the standard deviation 
of voxel intensities from a ROI in the liver interior: 

       (               )                             (1) 
 

The success of organ segmentation in ultra-low dose 3D 
scout is highly dependent of the contrast changes along the 
boundary of organ. High frequency artifacts such as streaks, 
increased noise, and blurred boundary due to heavy post-
processing all can impair the success of organ segmentation. 
To measure the strength of the contrast change at the 
boundary, we propose a new metric, normalized edge 
strength (NES) which adds normalization to prior metrics 
[14]. We manually extract the ground truth boundary from 
the liver in the reconstruction image of xCAT phantom using 
VV 4D slicer [15]. This boundary is represented by a 
piecewise linear polygonal curve and shown in blue in 

Figure 1(b). We extract the intensity profile along this curve 
from the image and denote the intensity profile along the 
boundary curve as c(t) were t parameterizes arc length along 
c, i.e. boundary curve. A clearly defined edge will have a 
high intensity gradient perpendicular to the boundary and a 
low gradient parallel to the boundary. To measure the 
perpendicular gradient, we evenly distribute 7mm line 
segments straddling the boundary, illustrated with green line 
segments in Figure 1(b). We extract the intensity profiles 
along those line segments and denote them as s(r) where r 
parameterizes arc length along s, i.e. line segment. Finally, 
we define the normalized edge strength (NES) of a boundary 
as:  
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For robustness to outliers, instead of taking average of 
gradients, we trimmed the highest and the lowest 2.5% 
values. For a vector input v, the trimmean(v,5) function 
computes the mean of elements in v, excluding the highest 
and lowest 2.5% values. 

 

III. RESULTS AND ANALYSIS 

The reconstructed images at iso-plane for each DOE are 
shown in Figure 2. Qualitatively we observe that as mA and 
number of views drop, images rapidly lose soft tissue 
contrast and the boundary of liver becomes invisible, shown 
in Figure 2(6), (7) and (8). Images with combination of 
various denoising techniques result in noisy but more visible 
organ boundaries, shown in Figure 2(10), (13) and (14). 
Especially, the image processed with the combination of 9-
pixel detector rebinning, smooth reconstruction kernel and 
fast iterative reconstruction, shown in Figure 2(14), presents 
with well-defined liver boundary while delivering only 
fraction of dose, 1.25%, from the baseline (DOE2, Figure 
2(2)). By allowing twice the x-ray exposure time per view, 
electronic noise was suppressed, as shown in Figure 2(15), 
(16) and (17). To deliver similar dose while allowing longer 
exposure, the number of views was aggressively reduced to 
62, only 6.2% of 1000 views in the baseline case. However, 
we observe that images reconstructed without dedicated 
sparse view reconstruction algorithm have very high noise 
and invisible organ boundaries, shown in Figure 2(17). 

 
Figure 1:  (a) liver region with 2cm by 2cm rectangular ROI 

in yellow for noise measurement (b) interpolated ground 
truth contour to measure NES (magnified view) 



To objectively and quantitatively compare the performance 
of various simulated 3D scout acquisitions, we plot both 
image quality metrics and % dose for every DOE shown in 
Table 1. Noise performances of various 3D scout 
acquisitions and post processing techniques are shown by 
the blue line in Figure 3 while the red line shows 
corresponding % dose level. DOE1 was simulated with 
2000mA to produce noise-free ground truth. DOE2 was 
simulated with 240mAs with full number of views and 
served as baseline. With combination of three de-noising 
approaches, the interior noise metric successfully reached 
the level of the baseline, DOE2, with only 1.25% of dose 
level in DOE2.  Similarly, the performance of normalized 
edge strength (NES) of various 3D scout acquisitions and 
post processing techniques are shown by the blue line in 
Figure 4 while the red line indicates corresponding % dose 

level. We observe that normalized edge strength (NES) 
increases greatly for 2 by 2 and 3 by 3 detector rebinning 
technique, DOE9 and DOE10, while the dose percentage is 
as low as 1.25%.  On the other hand, smooth reconstruction 
kernel and fast iterative reconstruction emulation don‟t 
improve normalized edge strength (NES) as much as 
detector rebinning. The combination of detector rebinning, 
smooth reconstruction kernel and fast iterative 
reconstruction techniques (DOE14) improves the 
normalized edge strength (NES) ever further, reaching 
nearly the level of full dose acquisition (DOE2). 

      

 

IV. CONCLUSION 

We investigated the feasibility of 3D volumetric 
preparatory scan, i.e. 3D scout, with ultra-low dose that is 
comparable to the dose of a conventional 2D scout while 
providing sufficient image quality, especially edge strength 
and uniformity, to make soft tissue organ boundaries 
prominent to facilitate segmentation and subsequent scan 
planning purposes. We proposed to reduce dose by reducing 

 

 
Figure 2: 3D scout with various acquisitions and post-
processing techniques are shown. See Table 1 for details.    

 

Figure 3:  interior noise metric and % dose from 240mAs 

baseline scan are shown in red and blue lines respectively. 

Each detector rebinning is labeled as 2x2 and 3x3. Smooth 

reconstruction kernel is labeled “soft”. Fast iterative 

reconstruction is labeled “Iter”. 

Figure 4:  Normalized edge strength (NES) and % dose 

from 240mAs baseline scan are shown in red and blue 

respectively. Each detector rebinning is labeled as 2x2 and 

3x3. Smooth reconstruction kernel is labeled as soft. Fast 
iterative reconstruction is labeled as Iter. 



mA and the number of views while maintaining x-ray 
exposure time per view.  We also proposed additional 
reconstruction and post-processing approaches to further 
improve image quality. We defined two image quality 
metrics to measure the edge strength at the boundary and 
noise uniformity inside of organs. We demonstrated that 3D 
scout can achieve equivalent image quality as a regular 
240mAs diagnostic scan while delivering only 1.25% of 
dose. This work presents an approach that allows 
investigating the feasibility of 3D scout independent of the 
organ segmentation algorithm. In future, we plan to 
investigate the feasibility of 3D scout with further reduced 
streaking artifacts, to improve image quality visually and to 
further evaluate with learning-based organ localization 
algorithm that we are developing [2-3].  
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