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ABSTRACT

The diagnosis of Autism Spectrum Disorder (ASD) is a
subjective process requiring clinical expertise in neurodevel-
opmental disorders. Since such expertise is not available at
many clinics, automated diagnosis using machine learning
(ML) algorithms would be of great value to both clinicians
and the imaging community to increase the diagnoses’ avail-
ability and reproducibility while reducing subjectivity. This
research systematically compares the performance of classi-
fiers using over 900 subjects from the IMPAC database [1],
using the database’s derived anatomical and functional fea-
tures to diagnose a subject as autistic or healthy. In total 12
classifiers are compared from 3 categories including: 6 non-
linear shallow ML models, 3 linear shallow models, and 3
deep learning models. When evaluated with an AUC ROC
performance metric, results include: (1) amongst the shal-
low learning methods, linear models outperformed nonlinear
models, agreeing with [2]. (2) Deep learning models out-
performed shallow ML models. (3) The best model was a
dense feedforward network, achieving 0.80 AUC which com-
pares to the recently reported 0.79±0.01 AUC average of the
top 10 methods from the IMPAC challenge [3]. These re-
sults demonstrate that even when using features derived from
imaging data, deep learning methods can provide additional
predictive accuracy over classical methods.

Index Terms— autism spectrum disorder, deep learning,
machine learning, MRI, neuroimaging

1. INTRODUCTION

Autism spectrum disorder (ASD) is a common psychiatric
disorder characterized by social and communication deficits
and a restricted pattern of interests [4]. It is known that indi-
viduals with ASD have altered neuroanatomy and connectiv-
ity, though the full extent of these relationships has not been
fully elucidated. Currently, the diagnosis of ASD is a sub-
jective process that requires an expert in neurodevelopmen-
tal disorders who may be unavailable at many clinics. Non-
invasive imaging captures structural and functional aspects of

brain development that are promising for an automated ma-
chine learning (ML) based diagnosis. Such automated ap-
proaches would reduce subjectivity and increase reproducibil-
ity and availability of the diagnosis. Existing literature on au-
tomated diagnostics are limited in two ways. First, in these
studies, just one category of predictive model is typically pro-
posed and fully optimized; making comparisons to compara-
ble methods biased. Second, they often depend on access to
raw image data. Sharing patient images can be problematic
due to concerns for patient identifiability. However prepro-
cessed data, such as volumetry and functional connectivity
are more easily shared. The Paris IMPAC Autism Challenge
[1] is one such sharable dataset containing the derived fea-
tures from structural MRI (sMRI) and resting state functional
MRI (rs-fMRI).

While in many problem domains, such as real world ob-
ject recognition, deep learning outperforms shallow learning,
this increase in performance has been attributed to the re-
placement of hand-engineered features with learned features.
To date there is limited research aimed at understanding how
deep learning methods compare in performance to shallow
ML methods on datasets with pre-derived features. Elucidat-
ing the comparative performance of model categories for such
large sharable datasets would be of great significance to guide
the image analysis community.

In order to perform a fair comparison, in this study each
model is similarly hyperparameter optimized using a random
search-based approach. Identical randomly chosen cross-
validation splits are used to train each model, ensuring similar
training opportunities for each model.

The primary contribution of this work is four-fold. First
the study provides a systematic comparison of 3 broad cat-
egories of methods: linear and nonlinear shallow ML mod-
els and deep learning models, and assesses their relative per-
formance. Second the study examines the relative perfor-
mance of anatomical features, functional features and their
combination and provides evidence of their level of comple-
mentarity. Third evidence for the effective level of granu-
larity for deriving regional features from whole brain parcel-
lations is obtained by comparing 7 atlases. Fourth the rela-
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tive performance of 12 individual classifiers is compared and
recommendations for ASD diagnosis is made for a specific
winning deep learning model, which achieves greater perfor-
mance than all other tested models.

2. MATERIALS AND METHODS

2.1. Materials

This study uses 915 subjects from the IMPAC dataset [1] that
received both sMRI and rs-fMRI and were identified by the
IMPAC organizers as having satisfactory images. The focus
of this study is the comparison of two-category classifiers for
diagnosing ASD or healthy control. The IMPAC dataset in-
cludes the clinical diagnosis (the classifier target) for which
there were 418 ASD patients and 497 healthy control sub-
jects. Structural MRI (sMRI) and resting state functional MRI
(rs-fMRI) were acquired for each subject. Figure 1 illustrates
how the features were derived from the MRI. From the sMRI,
207 features were extracted, including volumes of cortical and
subcortical structures, cortical thickness, and area per region
of interest (ROI) defined by the Desikan-Killiany gyral atlas
[5]. From the rs-fMRI, functional connectivity matrices were
derived. For this derivation, the rs-fMRI was first parcellated
into ROIs using seven different atlases including: atlases (1-
3) The BASC Atlas, whose regions are defined by k-means
clustering of stable coherent groups [6] for k=64, 122, and
197 ROIs, atlas (4) the Craddock atlas, which defines 249
ROIs by coherence of local graph connectivity [7], atlas (5)
the Harvard-Oxford Anatomical atlas, which defines 69 ROIs
using anatomical features, atlas (6) the MSDL atlas, which
has 39 ROIs defined by correlations of spontaneous activity
[8], and atlas (7) the Power atlas [9], which is defined by local
graph-connectivity into 264 ROIs. The rs-fMRI time signals
from each region were converted into a connectivity matrix
by projection into tangent space, a procedure which captures
connectivity aspects from both the correlation and partial cor-
relation [10]. Clinical data including patient gender and age
were also collected.

2.2. Data partitioning

Subjects were randomly partitioned with 80% assigned to
a training set and 20% to a test set with the split having
matching proportions of diagnosis (ASD/healthy) and gen-
der (male/female). The test subjects were set aside and not
used during training or model selection. The training set was
further split into validation and training folds using a 3-fold
stratified cross validation approach. To ensure fair subsequent
model comparison, the same splits were used for all tested
machine learning models.

2.3. Model construction

Systematic testing of a broad array of 12 machine learning
classifiers was conducted. This included 6 nonlinear shallow
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Fig. 1. Combinations of derived features used by the pre-
dictive models tested in this study. Image data (rs-fMRI and
sMRI) and was gathered externally by IMPAC organizers.
(A) The rs-fMRI was transformed into a symmetric connec-
tivity matrix for each atlas. (B) Upper triangular elements of
matrix were flattened into a 1D vector. (C) The sMRI was
transformed into a vector of cortical/subcortical ROI volumes
and cortical thickness features. In (D) the connectivity matrix
vector is used as the sole input for the predictive model, in (E)
both anatomical and connectivity derived feature vectors are
appended and used, while in (F) the anatomical features are
used as the sole input for the predictive model.

machine learning methods: a naı̈ve Bayes classifier, a sup-
port vector machine with a Gaussian kernel, a random forest
classifier, an extremely randomized trees classifier, adap-
tive boosting, and gradient boosting with decision tree base
models; 3 linear shallow models; a support vector machine
with a linear kernel, logistic regression with ridge regular-
ization, logistic regression with lasso regularization; and 3
deep learning approaches: a fully connected dense feedfor-
ward (FeedFWD) network, and a long-short term memory
(LSTM) based recurrent neural network classifier (RNN),
and the BrainNetCNN [11]. Classical models were con-
structed using the scikit-learn and XGBoost pakages, while
the deep learning models used the keras, tensorflow, and
caffe packages. The LSTM classifier uses an LSTM network
followed by a dense feedforward layer for classification like
[12] which can succeed even on non-sequential fixed vector
data, as suggested by [13]. The BrainNetCNN classifier is
a graph-convolutional network classifier [11]. The models
were trained on an NVIDIA Tesla p100.

2.4. Random search

To optimize each ML model, a random search was conducted
over the model’s hyperparameter space. A total of 50 random
points in hyperparameter space were sampled for each model.
To illustrate, consider the examples of simple and complex
dense FeedFWD networks that were tested are illustrated in
Table 1, in the left and middle columns respectively. In de-
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Table 1. Examples of dense FeedFWD network architectures
tested in the random search. Hyperparameters shown include
the regularization coefficient, # of layers, # of neurons/layer,
and dropout fraction. Left column illustrates a simple net-
work. Middle shows a complex network. Right column shows
the architecture of the highest performing network.

Simple Dense Network Complex Dense Network Highest Performing Dense Network
L2 Regularization: 2.3e-4 L2 Regularization: 2.3e-4 L2 Regularization: 1.1e-4

Dense 16 neurons Dense 128 neurons Dense 64 neurons
Dropout: 53% removed Dropout 18% removed Dropout 13% removed

Dense 16 neurons Dense 128 neurons Dense 64 neurons
Dense 1 neuron Dropout 18% removed Dense 1 neuron

Dense 64 neurons
Dropout 18% removed

Dense 42 neurons
Dense 1 neuron

tail, for the models tested these hyperparameter points were
randomly chosen from the following dimensions and ranges:
Random Forest: number of estimators [50, 5000], max nodes
[5, 50]; Extremely Random Trees: number of estimators
[50, 5000], max nodes [5, 50]; Adaptive Boosting: number
of estimators [20, 2000], learning rate [0.1, 0.9]; Gradient
Boosting: number of estimators [5, 5000], max depth [1, 10],
subsampling fraction per tree [0.2, 0.8], fraction of columns
per tree [0.2, 1], learning rate [0.01, 1]; SVM with Gaussian
Kernel: C [0.0001, 10000], maximum iterations: [10000,
100000], gamma [0.01, 100]; SVM with Linear Kernel: C
[0.0001, 10000], maximum iterations: [10000, 100000]; lo-
gistic regression with lasso regularization: C [0.0001, 10000],
maximum iterations [1000, 100000]; logistic regression with
ridge regularization: C [0.0001, 10000], maximum iterations
[1000, 100000]; dense FeedFWD network: number of hidden
layers [1, 3], layer width [16, 256]; dropout fraction [0.1, 0.6],
L2 regularization coefficient [0.0001, 0.02], LSTM: number
of hidden layers [1, 3], layer width [16, 256], dropout fraction
[0.1, 0.6], L2 regularization coefficient [0.0001, 0.02]; Brain-
NetCNN: number of hidden layers [0, 2], layer width [16,
64], dropout fraction [0.1, 0.6], ReLU slope for x<1 [0.1,
0.5]. Deep learning models used the leaky ReLU activation
function, early stopping, the Nesterov ADAM optimizer, a
batch size of 128, and the binary cross-entropy loss function.

Each of our 12 models types was trained on 15 different
feature sets, for a total of 180 model type × feature set com-
binations. The feature sets contain measures of anatomical
volume and functional connectivity from the IMPAC dataset.
These feature sets included: (1) 207 measures of regional vol-
ume and thickness, (2-8) functional connectivity measured
between regions defined by one of the 7 atlases described in
the materials section above, (9-15) the union of the anatom-
ical with one of the functional feature sets. The model with
the highest average area under ROC curve over the cross val-
idation folds was selected as the best model for each model
type × feature set combination. This model was then trained
on all training data and evaluated on the held out test set not
used in training.

3. RESULTS

The results are summarized in Figure 2, which shows the area
under the ROC curve of different machine learning models
predicting ASD vs healthy control on the test data that was
held out from training.

3.1. The importance of feature set combination

Comparing the 15 feature sets (rows of Figure 2), it can be
observed that the anatomical features yielded the lowest pre-
diction accuracy by area under the ROC curve, while the
rs-fMRI functional connectivity features alone yielded mod-
els with higher predictive power than anatomical features.
For functional connectivity data alone, the BASC atlas with
any number of parcellations and the Power atlas generated
models with more predictive power than other atlases. How-
ever the combination of anatomical and functional features
yielded models with even higher predictive power, suggest-
ing their complementarity. The best performing models used
the anatomical features with connectivity features from the
Power atlas, Craddock atlas, or BASC atlas. Models trained
on the Harvard-Oxford atlas connectivity data and volumetric
data are notably lower performing, and models trained on
the MSDL atlas were slightly better than those trained on the
Harvard-Oxford atlas.

3.2. The importance of model type

The most accurate shallow machine learning algorithm was
logistic regression with ridge regularization, which had a
maximum ROC AUC of 0.773. Of the nonlinear methods,
the extremely randomized trees performed the highest, and
the adaptive boosting methods performed the lowest. Overall,
deep learning outperformed shallow learning, and the highest
performing shallow linear methods outperformed the highest
performing shallow nonlinear methods.

As shown in the columns towards the right of Figure 2,
the deep learning methods performed higher than the other
categories of models. The most successful deep learning al-
gorithms were the dense FeedFWD network which achieved
an ROC AUC of 0.804 and LSTM, which achieved an ROC
AUC of 0.776. The BrainNetCNN model is only defined for
functional connectivity input features, but on those features
it performed lower than the other deep learning models with
a performance similar to the linear models. Like the shallow
methods, the deep learning methods performed best when us-
ing the combination of functional and anatomical features.
The highest overall performance was the dense FeedFWD
network, whose architecture is shown in Table 1 right column,
using the rs-fMRI connectivity data with the BASC atlas with
122 ROIs and the sMRI volumetric data combined, achieving
an AUC of 0.804. Other permutations using the BASC at-
lases, Craddock atlas, and Power atlas as training data for the
dense FeedFWD network also performed well.
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SMRI Structural Data Alone Anatomical Volumetric Data 0.5842 0.5695 0.6091 0.5991 0.6347 0.5471 0.5907 0.6316 0.6195 0.6055 0.6481 NA

BASC Atlas with 64 ROIs 0.7223 0.7197 0.7220 0.6912 0.7015 0.6714 0.6595 0.6947 0.7595 0.7492 0.7643 0.6627

BASC Atlas with 122 ROIs 0.7126 0.7280 0.7392 0.6863 0.7292 0.6535 0.6975 0.6715 0.7602 0.7647 0.7760 0.6839

BASC Atlas with 197 ROIs 0.7102 0.7072 0.7249 0.6788 0.6968 0.7011 0.6842 0.6704 0.7623 0.7557 0.7572 0.6534

Craddock Atlas with 249 ROIs 0.6614 0.6989 0.7070 0.6495 0.7076 0.6438 0.6369 0.6800 0.7183 0.7410 0.7348 0.6050

Harvard-Oxford Atlas with 69 

ROIs
0.7109 0.7049 0.6442 0.6278 0.5914 0.6136 0.6095 0.6778 0.6947 0.6472 0.6983 0.6616

MSDL Atlas with 39 ROIs 0.7080 0.6809 0.6700 0.6207 0.6688 0.6508 0.6291 0.6449 0.7035 0.6747 0.6950 0.6299

Power Atlas with 264 ROIs 0.6635 0.6382 0.6671 0.6360 0.6656 0.6746 0.6815 0.6881 0.7354 0.7374 0.7452 0.5820

Anatomical Data with the BASC 

Atlas - 64 ROIs
0.7189 0.7246 0.7208 0.7076 0.7383 0.7053 0.6901 0.7548 0.7537 0.7548 0.7652 NA

Anatomical Data with the BASC 

Atlas - 122 ROIs
0.7379 0.7338 0.7489 0.7175 0.7196 0.6699 0.6833 0.7299 0.7436 0.8040 0.7736 NA

Anatomical Data with the BASC 

Atlas - 197 ROIs
0.7160 0.7033 0.7247 0.6849 0.7015 0.6961 0.6833 0.7039 0.7558 0.7840 0.7709 NA

Anatomical Data with the 

Craddock Atlas - 249 ROIs
0.6916 0.7043 0.6670 0.5816 0.6811 0.6782 0.6791 0.6833 0.7475 0.7697 0.7638 NA

Anatomical Data: Harvard-

Oxford Atlas - 69 ROIs
0.6729 0.6876 0.7146 0.6395 0.6527 0.6613 0.6521 0.7162 0.7387 0.7082 0.7157 NA

Anatomical Data with the 

MSDL Atlas - 39 ROIs
0.6738 0.6893 0.6906 0.6391 0.6727 0.6869 0.6800 0.7097 0.7387 0.7456 0.6907 NA

Anatomical Data with the Power 

Atlas - 264 ROIs
0.6872 0.6788 0.6768 0.6291 0.6568 0.6957 0.7035 0.7190 0.7734 0.7696 0.7417 NA

Linear ModelsNonlinear Models

rs-fMRI Connectivity Data 

Calculated With One Atlas

Combined rs-fMRI 

Connectivity Data and sMRI 

Structural Data

Lowest Area 

Under ROC 

Curve

Deep Models 

0.8

0.5

Fig. 2. Performance of classifiers predicting the diagnosis of ASD versus healthy control. Performance is measured as the area
under the ROC curve on held-out test data. Cooler colors indicate superior performance.

4. DISCUSSION AND CONCLUSIONS

Mensch et al. [14] reported high performance using deep
learning networks for decoding brain activity to predict of
the class of psychological stimuli presented in neuroimaging
studies. This study focused on the classification of ASD ver-
sus healthy control and also demonstrated high performance
using deep learning, adding to the evidence that deep learn-
ing is effective at classification from multidimensional neu-
roimaging data. The highest performing model in this study
was a dense FeedFWD network which achieved 0.80 AUC,
which is quite similar to the 0.79±0.01 AUC average of the
top 10 methods recently reported from the IMPAC challenge
[3]. Classification of ASD has been reported by Parisot et al.
[15] and Meenashki et al. [16]. These methods both employ
novel convolutional neural networks to achieve state-of-the-
art performance of 70.4% and 73.3% accuracy respectively
on the open source ABIDE dataset for ASD [17], but both
depend on the raw imaging data.

The results of this study indicate multiple conclusions:
First, the results show that deep learning is still a valuable
tool that is able to extract additional predictive power over
shallow methods even when provided pre-extracted feature
sets. Second, the subset of atlases that performed better is in-
formative for ASD diagnosis. Across many different machine
learning modalities, the functional BASC atlas, derived using
a k-means clustering approach, performed very well. Its 122
and 197 ROI versions performed better than the 64 ROI ver-
sion. This suggests the scale or granularity of neuroimaging-
detectable changes in functional connectivity in ASD. Also,

this suggests that k-means clustering and other graph-based
clustering methods such as the Power and Craddock atlases,
may be more suited to accurately elucidate functional connec-
tivity changes in ASD than other parcellation methods. Third,
the uniformly poor performance observed when models use
purely anatomical features suggests that the deficits in ASD
are reflected more by changes in functional connectivity than
by changes in volume and cortical thickness. This finding is
in agreement with results of previous studies [16]. However,
the fact that in general, combining anatomical features with
functional connectivity features tended to improve model per-
formance across model categories, supports the notion that
the information is complementary and should be combined to
maximize predictive accuracy.

In summary, this study provides insights into the compar-
ative performance of three categories of widely used machine
learning models, including both linear and nonlinear shallow
models as well as deep learning models for the important
task of automating diagnosis for Autism Spectrum Disorder.
It provides insights into the combination of anatomical and
functional features that are most useful for diagnosis of ASD
and demonstrates that their combination is most appropriate.
The study also demonstrates that a finer level of granularity in
whole brain parcellation with roughly 120 ROIs outperforms
coarser parcellations. Lastly the study shows that a dense
FeedFWD network outperforms other models even when fea-
tures are pre-extracted from MRI and attains highly accurate
diagnosis compared to previously published methods. In the
future we aim to continue to improve upon automated classi-
fication performance in ASD and other neuropathologies.
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