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A B S T R A C T   

Despite the prevalence of Parkinson’s disease (PD), there are no clinically-accepted neuroimaging biomarkers to 
predict the trajectory of motor or cognitive decline or differentiate Parkinson’s disease from atypical progressive 
parkinsonian diseases. Since abnormal connectivity in the motor circuit and basal ganglia have been previously 
shown as early markers of neurodegeneration, we hypothesize that patterns of interregional connectivity could 
be useful to form patient-specific predictive models of disease state and of PD progression. We use fMRI data from 
subjects with Multiple System Atrophy (MSA), Progressive Supranuclear Palsy (PSP), idiopathic PD, and healthy 
controls to construct predictive models for motor and cognitive decline and differentiate between the four 
subgroups. Further, we identify the specific connections most informative for progression and diagnosis. When 
predicting the one-year progression in the MDS-UPDRS-III1* and Montreal Cognitive assessment (MoCA), we 
achieve new state-of-the-art mean absolute error performance. Additionally, the balanced accuracy we achieve in 
the diagnosis of PD, MSA, PSP, versus healthy controls surpasses that attained in most clinics, underscoring the 
relevance of the brain connectivity features. Our models reveal the connectivity between deep nuclei, motor 
regions, and the thalamus as the most important for prediction. Collectively these results demonstrate the po
tential of fMRI connectivity as a prognostic biomarker for PD and increase our understanding of this disease.   

1. Introduction 

Neurodegenerative diseases remain difficult to diagnose until late in 
their course. Additionally, their future trajectories remain challenging to 
prognose, with unbiased assessments being time consuming and difficult 
to administer. One promising avenue for making informative prognostic 
and diagnostic decisions for patients is through neuroimaging tech
niques. Functional Magnetic Resonance Imaging (fMRI) is of particular 
interest because functional changes are an early and sensitive marker of 
neurodegeneration, that precede atrophy visible in structural MRI and 
diffusion MRI (Dadi et al., 2019), do not require expensive and ionizing 
radiation like PET and SPECT imaging (Leung et al., 2019; Mansu et al., 

2017), and provide insights into the pathophysiology of these complex, 
multifaceted diseases (Noble et al., 2019; Smitha et al., 2017). Measures 
derived from fMRI, particularly interregional brain connectivity, have 
been strongly predictive in a wide variety of prognostic and diagnostic 
analyses for neurodegenerative diseases and reveal networks and 
signaling pathways associated with disease symptoms, prognoses, and 
subtypes (Smitha et al., 2017). Among neurodegenerative diseases, 
Parkinson’s disease (PD) is the second most common (Jankovic and Tan, 
2020; Pringsheim et al., 2014). It is a movement disorder with no clin
ically accepted neuroimaging measures of prognosis. The diagnosis of 
PD relies on a detailed clinical evaluation and differentiating it from 
other forms of Parkinsonism such as Multiple System Atrophy (MSA) 
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and Progressive Supranuclear Palsy (PSP) can be challenging. To fill this 
need, we develop predictive models using new measures of connectivity 
to predict an individual’s long-term motor and cognitive trajectories – 
achieving state of the art performance. The same measures also differ
entiate between PD, MSA, PSP, and healthy controls. We use a new NIH 
dataset in which medication confounds have been minimized which not 
only allows to make more accurate predictions, but also enables the 
identification of connectivity features associated with true disease pro
gression and not confounded by medication. Finally, we present an fMRI 
data augmentation method to construct more accurate machine learning 
predictive models from such finite datasets. The tools and analyses 
presented in this manuscript are a substantial step to address clinical 
needs and the implicated interregional brain connectivity measures 
provide new avenues for further research and potential therapeutic 
targets. 

1.1. Parkinson’s disease diagnosis 

Parkinson’s disease has two major symptomatic lookalikes, PSP and 
MSA. Despite the similar symptoms, these diseases have distinct path
ophysiology and require distinct treatments (Hughes et al., 2002). In 
general clinical settings (i.e. outside of movement disorder specialty 
clinics), the diagnostic balanced accuracy is typically only 0.63 and even 
in movement disorder specialist clinics, the balanced accuracy is only 
0.75 early in the disease presentation (i.e. de novo cases) (Hughes et al., 
2002). The accuracy of diagnoses by specialists does increase as the 
disease progresses, but a tool which could diagnose the disease earlier 
would be preferable. Due to this low accuracy, there has been great 
interest in developing machine-learning based diagnostic models to 
supplement clinical findings and aid diagnosis. However, since the 
precise changes in the brain during the progression of Parkinson’s dis
ease are poorly understood (Jankovic and Tan, 2020; Pringsheim et al., 
2014), model development has been impeded. Recently, evidence has 
emerged suggesting that structural connectivity measures, present in 
diffusion tensor imaging (DTI) MRI, may be useful for this diagnostic 
task with balanced accuracy up to 0.77 (Chougar et al., 2021). Our 
work’s 0.68 balanced accuracy indicates that connectivity measures 
from functional MRI are also similarly discriminative, potentially help
ing to elucidate the differing pathophysiologies of PD, PSP, and MSA. 

1.2. Parkinson’s disease prognosis 

Currently there is no clinically accepted tool to predict the trajectory 
of disease for individual patients with PD. Developing such a tool would 
enable physicians to inform patients of their prognosis and enrich clin
ical trials with fast progressors likely to show change even in their spans 
of just two years. Neuroprotective trials in PD have been hamstrung by 
the rate of participants disease progression being variable and often 
gradual, so that the control group deteriorates little over the few years 
that is feasible to conduct a trial, and the intervention group has limited 
opportunity to show efficacy. A prognostic tool would empower such 
clinical trials to identify effective candidate treatments. Currently, there 
are heuristics that guide PD prognosis including the unilaterality versus 
bilaterality of symptoms and age of onset, but these remain coarse and 
non-quantitative (Jankovic and Tan, 2020). Therefore, biomarkers for 
quantitative prognosis are needed (Marek et al., 2018). We expect the 
ability to predict prognosis will aid in the development of and iteration 
upon disease-modifying therapies, provide patients with more certain 
estimates of their progression, and provide a stepping-stone for future 
therapies by identifying connectivity biomarkers associated with pro
gression. The minimal clinically important difference (CID) in PD pa
tient’s MDS-UPDRS-III score is 3.25, so models should target an error of 
less than 3.25 to be useful (Horváth et al., 2015). Previous studies have 
employed T1 imaging (Zeighami et al., 2019), SPECT imaging (Leung 
et al., 2019; Mansu et al., 2017), and DTI imaging (Taylor et al., 2018) to 
predict PD progression. However, these methods achieve mean absolute 

errors (MAEs) in MDS-UPDRS-III prediction only as low as 3.22, barely 
exceeding recommended bar for CID of 3.25 and do not offer additional 
connectivity insights into the pathophysiology of the disease. There has 
also been evidence of early and sensitive prognostic correlates in fMRI, 
but the majority of these studies have been confounded by medication 
(e.g., levodopa or one of its analogues) at the time of imaging and MDS- 
UPDRS-III evaluation. Previously identified functional correlates to 
diagnosis, specific symptom severity, medication response, and other 
non-prognostic neuroimaging biomarkers are numerous in the litera
ture, suggesting a robust functional signal of PD pathophysiology 
(Amboni et al., 2015; Baggio et al., 2015; Hassan et al., 2017; Hou et al., 
2017; Ng et al., 2017; Tuovinen et al., 2018). Specific functional cor
relates of long-term prognosis as measured with MDS-UPDRS-III or 
MoCA have been found by multiple researchers, confirming that there 
are not only correlates to current severity, but also future severity 
(Burciu et al., 2016; Hou et al., 2017; Manza et al., 2016; Olde Dubbelink 
et al., 2014; Simioni et al., 2016). However, there has been a dearth of 
methods employing effective connectivity (i.e., causal connectivity) as a 
prognostic biomarker, which our study addresses. Effective connectivity 
can have higher predictive power than functional connectivity, but more 
importantly it has direct interpretability in the discovered connections 
and allows greater insight into pathophysiology than purely functional 
measures (Bielczyk et al., 2019; Chockanathan et al., 2019; Friston et al., 
2019; Mellema and Montillo, 2023; Yao et al., 2017). We hypothesize 
that using effective connectivity measures to make prognostic models 
will generate more accurate predictions of 1-year progression. 
Furthermore, we hypothesize that mining these predictive models’ most 
important features will indicate brain regions and connections of po
tential pathological import in PD. 

1.3. Contributions 

The primary contributions of this work are five-fold.  

1. We develop prognostic models with leading accuracy for predicting 
the 1-year change in motor symptomatology and for predicting the 1- 
year change in cognitive function.  

2. We develop diagnostic models for PD, achieving balanced accuracy 
to differentiate PD, PSP, MSA and normal controls above that 
attained in most clinics.  

3. We quantitatively compare four measures of functional and effective 
connectivity, including new measures which incorporate structural 
priors as well as traditional measures across the aforementioned 
diagnostic and prognostic predictive tasks.  

4. We develop an anatomically realistic augmentation method for 4D 
fMRI–derived connectivity analysis and demonstrate that it can 
significantly improve prediction performance.  

5. We identify the most strongly associated connections for each 
prognostic and diagnostic target, revealing what the models have 
learned and providing new insight into disease mechanism. 

2. Materials and methods 

2.1. Materials 

This work uses fMRI data from the Parkinson’s Disease Biomarkers 
Program (PDBP) (Ofori et al., 2016) to construct diagnostic and prog
nostic models. The PDBP dataset was chosen as the primary dataset due 
to its emphasis on fMRI data collection with patients in an OFF- 
medication state, since medication level has been a significant 
confound in PD outcome studies (Ng et al., 2017). Previous studies have 
found greater than 80 % concordance between task and rest fMRI signal 
and have successfully used task fMRI for resting analysis (Beheshtian 
et al., 2021; Kraus et al., 2021). Therefore, while only task-based fMRI 
was gathered by PDBP, we treated it as resting data in subsequent 
analysis, so that we can apply our connectivity analysis which has been 
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validated on resting state fMRI. The task used in this study followed a 
hand-grip paradigm (Ofori et al., 2016), suggesting motor regions (i.e. 
the primary regions involved in this task) would be the most affected by 
the task-as-rest assumption (Kraus et al., 2021). However, even with this 
task-as-rest assumption, prior work reliably identifies consistent 
network topologies and variants unique to the subject (Beheshtian et al., 
2021; Kraus et al., 2021). Connectivity measures were derived from the 
baseline (year 0) fMRI scan of each subject and used as the inputs to form 
prognostic models that predict the diagnosis and the primary outcome 
tracked in PDBP, namely the 12 month change in UPDRS-III score. 

The change in the UPDRS over a 1-year period was significant as 
tested with a paired t-test, p-value 2.53E-5. The net change in the MoCA 
score in the PD population was not significant as tested with the same 
paired t-test. As cognitive changes take longer in the progression of PD, it 
is expected that only some patients will have significant changes over a 
1-year period. The MoCA results, therefore, should be interpreted as an 
ability to pick up on some patients who have significant changes 
amongst a larger population who do not meaningfully change over the 
time of the study. Previous results by Krishnan et al (Krishnan et al., 
2017) suggest that changes less than 2 points on the MoCA scale are 
insignificant, meaning 25 of the 71 patients in this PDBP sample have a 
meaningful progression over this period. Our ability to predict changes, 
then, hinges on our ability to distinguish these “progressors” from non- 
progressors. 

The subset of the PDBP dataset used includes all 146 subjects with 
fMRI, including 73 idiopathic PD, 45 Normal Control (NC), 21 PSP, and 
7 MSA subjects. Subjects were enrolled in the study on average 3 years 
after initial diagnosis by a movement disorder expert, then followed 
prospectively for up to 3-years during which time the diagnosis was 
open to revision; the final diagnosis is used for classification purposes. 
All fMRI data was collected as described in Supplemental Section 10.2. 
Data was collected from 2 sites, with identical acquisition parameters 
and scanner make and model. The subjects were tested and scanned after 
12–14 h of overnight withdrawal of antiparkinsonian medication. 
Further details on the cohort selection criteria can be found in Burciu 
et al. (Burciu et al., 2016). We performed 3 predictive tasks on PDBP. (1) 
For the diagnostic task, we built a 4-class classifier to distinguish be
tween PD, PSP, MSA, and NC. For the prognostic measures, we (2) built a 
regression model to predict the 1-year change in motor skills as 
measured through a motor examination (MDS-UPDRS-III), and (3) an 
additional model to predict the change in cognitive score (MoCA). 

The demographics of the subjects used in the subsequent diagnostic 
prediction experiments are shown in Table 1 (row a). For the motor 
progression task, we used the 63 PD subjects who had a recorded one- 
year change in the MDS-UPDRS-III. Demographics for the longitudinal 
motor progression prediction are shown in Table 1 (row b). For the 
longitudinal cognitive prediction task, we use all 71 PD subjects who 
had a recorded 1-year change in their Montreal Cognitive Assessment 
(MoCA). Demographics for the longitudinal cognitive progression pre
diction are shown in Table 1 (row c). 

2.2. Methods 

2.2.1. Derivation of the functional connectivity covariates from the 
functional MRI 

All fMRI data was prepared with an in-house fMRI preprocessing 
pipeline with advanced motion correction, shown to be significantly 
better at removing motion artifact in PD than competing methods (Raval 
et al., 2022). Pipeline processing details are provided in Supplemental 
Section 10.2. Mean regional timeseries were extracted with the 
Schaefer atlas with 100 cortical regions and 35 additional subcortical 
regions included (Schaefer et al., 2018). The Schaefer atlas is a func
tional atlas whose regions are defined through the clustering of func
tional activity in fMRI. This functional atlas was chosen because: 1) a 
functional atlas tends to capture better functional variability than a 
purely anatomical atlas (Mellema et al., 2022), and 2) the Schaefer atlas 
groups regions into resting-state networks (RSNs), which facilitates 
inter- and intra-RSN partitioning and analysis. The cerebellum and 
striatum from the Automated Anatomical Labelling (AAL) atlas (Ofori 
et al., 2016; Rolls et al., 2020) were included because both structures 
contain signals of diagnostic importance and have been often over
looked in prior analyses (Stoodley et al., 2012). 

From each mean regional timeseries, the timeseries was linearly 
detrended and z-score normalized, and a set of functional connectivity 
(FC) and effective connectivity (EC) measures were derived. The FC 
measures included Correlation (Corr), Partial Correlation (PCorr), and a 
machine learning measure of functional connectivity from an XGBoost 
predictive model (ML.FCXGB). Correlation and partial correlation are 
commonly used measures of FC, while ML.FCXGB has been shown to 
potentially contain more predictive information for prognostic tasks 
than the other two FC measures (Mellema and Montillo, 2023). ML.
FCXGB was shown to have the highest reproducibility across multiple 
scans of the same subject and higher predictive power across physio
logical and cognitive prediction targets. The EC measures included (1) 
Principal Components Granger Causality (PC.GC), which calculates a 
Granger-Causality score from a lower-dimensional Principal Compo
nents projection, and (2) Structurally Projected Granger Causality 
(SP.GC). SP.GC (Mellema and Montillo, 2023) calculates a Granger- 
Causality score from a lower-dimensional Structural Projection which 
uses a population-average diffusion-MRI derived tractography connec
tivity prior calculated on the Human Connectome Project (Yeh et al., 
2018) in the initial projection. This prior is a diffusion-MRI atlas of 
connectivity developed from over 800 healthy subjects and represents a 
“standard structural connectivity” prior. SP.GC regularizes the brain 
connectivity by projecting brain activity into a lower dimensional space 
with a preference for communication along physically connected paths. 
SP.GC was shown to have higher reproducibility than other EC measures 
and having more predictive power for multiple targets. PC.GC was 
chosen because it also performed well in predictive tasks (Mellema and 
Montillo, 2023). Please note that there remains some controversy of the 
nature of the directed functional interactions inferred by Granger causal 
methods– particularly on if they truly can be called “causal”. We have 
chosen here to adhere to common nomenclature of “Granger causality”, 
“causal“, and “effective connectivity”, but note the active discussion of 
the nature of connections inferred by this technique (Barnett et al., 

Table 1 
PDBP Demographics. Row 1a lists the demographics of subjects with an available fMRI and diagnosis, Row 1b shows the demographics of PD subjects with an available 
initial fMRI and recorded 1-year change in MDS-UPDRS-III score, and Row 1c shows the demographics of PD subjects with an available initial fMRI and recorded 1-year 
change in MoCA.   

Target # Subjects Age % Female # PD/NC/PSP/MSA 

a Diagnosis 146 65.1 ± 8.8 42.5 % 73/45/21/7      
Initial score 1 yr Δ score 

b MDS-UPDRS-III 63 64.4 ± 9.0 31.6 % 40.0 ± 27.4 12.5 ± 6.5  

c MoCA 71 64.0 ± 8.9 31.0 % 25.89 ± 2.76 − 0.25 ± 2.24  
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2018; Stokes and Purdon, 2017). Each connectivity measure produces a 
matrix containing the strength of connection between each region of 
interest (ROI); the value representing the connection strength between 
two ROIs is also called an ‘edge’ and the ROI is also called a ‘node’. See 
Supplemental Section 10.3 for further detail. 

2.2.2. Augmentation of fMRI 
Augmentation can improve model performance without introducing 

spurious findings by introducing realistic perturbations so a training 
dataset can be representative of more of the population variation than 
the original dataset (Chlap et al., 2021). We adapt the BLENDS method 
which generates realistic perturbations in fMRI by warping to new 
subject’s anatomy who was not in the original training set (Nguyen 
et al., 2022). BLENDS assumes that brain anatomy (the specific shape of 
the gyri and sulci) is not the primary determinant in the disease process. 
Therefore, new fMRI can be constructed from existing by warping 
existing brain shape to that of another subject’s with the same diagnosis. 
In PD, atrophy of deep nuclei but not cortical brain shape is associated 
with early diagnosis or progression (Zeighami et al., 2019), so the 
BLENDS methodology is appropriate as an augmentation approach. 
Augmentation was performed on the training data only and not for 
validation or testing. The additional anatomic augmentation samples 
were drawn from disease-matched PDBP subjects with T1 images and no 
corresponding fMRI. 

BLENDS is suitable for deriving connectivity measures because it 
generates a new timeseries (4D) fMRI. However, the magnitude of the 
BLENDS-induced variation is small. Across the PDBP diagnostic subject 
set, the R2 between each augmented and original timeseries is 0.79+/- 
0.02. Therefore, we adapted the BLENDS method by increasing the 
perturbation magnitude. This was achieved in two steps. First, the dif
ference between the original timeseries and initial BLENDS-perturbed 
timeseries was calculated and the difference was scaled to a gain fac
tor of 0.5, i.e., while the original fMRI timeseries was scaled to 0 mean 

and unit variance, the difference was scaled to 0 mean and 0.5 variance. 
Then, this scaled difference was added back to the initial fMRI timeseries 
to create the augmented timeseries. Finally, connectivity measures are 
calculated on the augmented timeseries as was done in the initial 
timeseries. The full augmentation pipeline is illustrated in Fig. 1. This 
augmentation drives the augmented vs. original connectivity R2 down to 
as low as 0.26 as shown in Table 2. Augmentation without applying a 
gain factor resulted in an augmented vs. original connectivity R2 which 
was greater than 0.98, that was deemed to be insufficient variation 
introduced by the augmentation method. The gain factor of 0.5 was 
empirically chosen to preserve a moderate R2 for all connectivity 
measures. 

2.2.3. Predictive model training using covariates from fMRI and 
clinicodemographics 

We trained a separate XGBoost predictive model (Chen and Guestrin, 
2016) for each of the PDBP targets as it has been shown to be highly 
efficacious for tabular data and apt to identify predictive signals in other 
neurodegenerative diseases (Marinescu et al., 2022; Torlay et al., 2017). 
This machine learning model paradigm has been shown to be a partic
ularly efficacious method for making predictions on complex data where 
the relation (linear or nonlinear) between the input and target are un
known, particularly when the data is best represented as a wide matrix, 
as in our case (Marinescu et al., 2022; Torlay et al., 2017). 

For an unbiased estimate of model performance, we employed a 
nested, 10x9 fold cross-validation partitioning, with separate training, 
validation, and test partitions to hyperparameter optimize (HPO) and 
evaluate our model. We performed a single stratified split into 10 folds, 
then held out 1 fold for testing, performed a 9 fold cross validation with 
the 9 remaining folds, and then permuted the testing fold. We got 10 test 
performances from 10 separately optimized models. The folds were split 
with stratification by the target (diagnosis, MDS-UPDRS-III, etc.) age, 
gender, and ethnicity. Within each inner loop, Bayesian hyperparameter 

Fig. 1. Augmentation of fMRI timeseries data. (A) Initially a set of subjects’ T1 sMRI (MPRAGE) is nonlinearly warped to MNI-152 space, and each subject’s inverse 
transform, Wi, is stored in a library of warps. To create a perturbation for each subject fMRI from the original dataset, 5 of these warps are blended with a random 
spatial Gaussian mixing with blending matrices Bi to create a unique blended warp, Wblend (B) Next, the original subject had their fMRI perturbed by applying the 
blended warp to every frame to generate a scan with the original functional activity projected onto the new realistic brain shape (combination of 5 other subjects’ 
brains). (C) This generates small but realistic distortions in the extracted mean regional timeseries. (D) The small differences in the timeseries were scaled up with a 
gain factor to generate larger timeseries differences, treating the first realistic distortion from (C) as analogous to the initial step in a gradient descent. 

Table 2 
Similarity post-augmentation shows the similarities of the measures obtained before augmentation and after augmentation. The R2 for the entire timeseries is on the 
left, and the R2 for the augmented connectivity measures are on the right.  

R2 between original and augmented timeseries Connectivity measure R2 between original and augmented connectivity measure 

0.79 ± 0.02 

Correlation 0.74 ± 0.05 
Partial Correlation 0.78 ± 0.04 
PCA Granger Causality 0.49 ± 0.23 
Structurally Projected Granger Causality 0.26 ± 0.22  
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optimization (Liaw et al., 2018; Martinez-Cantin, 2014) was performed 
searching over 128 model configurations. This training setup has been 
shown to be more representative of real-world model performance after 
hyperparameter optimization than a single partition (single held-out test 
set) (Cawley and Talbot, 2010). Further model optimization details 
including the hyperparameters optimized (including L1 and L2 
normalization) are in Supplemental Section 10.4. 

For all models, each continuous feature was z-score normalized 
based on the training fold data, while each categorical feature was left as 
a category. Clinicodemographic covariates including site of data 
collection, age, gender, ethnicity, education level, and handedness were 
included as additional covariates to the FC or EC derived connectivity 
measures. The clinicodemographic data was preserved for each 
augmentation of a given subject. As the dimensionality of the flattened 
1D-vector reformatting of an 2D EC or FC matrix contains up to 18,225 
unique elements, we applied a dimensionality reduction per fold step 
using principal components analysis (PCA) fit on the validation data 
only where the number of components were chosen using the kneedle 
algorithm (Satopaa et al., 2011). We also compared with an alternative 
dimensionality reduction technique, univariate dimensionality reduc
tion, in which the top 5 % of the most target correlated edges in the 
training data are retained for the model. This led to a training dimen
sionality of 50–150 samples by 20–30 or 50–60 features in the PCA and 
univariate approaches respectively. For all models, performance on the 
held out test data is reported. The test data was not seen in model 
training nor selection and additional checks were placed to ensure there 
was no leakage of training into validation and no leakage of train or 
validation into test. 

2.2.4. Experiment specifications 

2.2.4.1. Experiment 1: Diagnosis of PD vs PSP vs MSA vs normal control. 
Our first experiment predicted a diagnosis for each patient among these 
labels: PD, PSP, MSA, or NC. We used the available PDBP data which 
includes 45 NC patients, 73 PD patients, 21 PSP patients, and 7 MSA 
patients. We tested our ability to differentiate these diagnoses when 
using clinicodemographic features and EC and FC measures. These 
clinicodemographic features included both initial clinical scores (MoCA 
and UPDRS), as well as age, site, handedness, education level, gender, 
and ethnicity. The EC and FC measures used included the following: 
Corr, PCorr, ML.FCXGB, PC.GC, and SP.GC. We also tested augmentation 
factors of 0 (no augmentation), augmentation to achieve a uniform 
distribution over diagnostic groups (‘Match’ augmentation), augmen
tation to a uniform distribution with 5x the least populous group, uni
form with 10x, and uniform with 20x. We used the HPO training scheme 
as described above to optimize the XGBoost models, choosing the best 
model per inner validation fold with the highest balanced accuracy on 
those inner folds and evaluating its performance in the test partition 
from the outer fold not seen during model training nor model selection. 
We then report the test performances (balanced accuracy) on each of the 
10 outer folds. 

2.2.4.2. Experiment 2: Prognosis of motor symptom (MDS-UPDRS-III) 
progression. Our second experiment regressed the 1-year change in the 
MDS-UPDRS-III scores in 63 PD patients. MDS-UPDRS-III scores was 
acquired while patients were off PD medications for at least 12 h. We 
performed this regression with the clinicodemographic features and EC 
or FC measures and include baseline MDS-UPDRS-III as a covariate. We 
tested augmentation levels of: 0x (no augmentation), augmentation to 
achieve a uniform distribution over the range of MDS-UPDRS-III change 
(‘Match’), augmentation to 5x the original sample size and sampled to a 
uniform distribution, then the same with 10x and 20x. We trained 
XGBoost models with Bayesian hyperparameter optimization (Liaw 
et al., 2018; Martinez-Cantin, 2014) and chose the hyperparameter 
configuration with lowest mean absolute error on the validation set. We 

report the test performance on the outer 10 folds of the best performing 
models on the inner validation folds. 

2.2.4.3. Experiment 3: Prognosis of cognitive symptom (MoCA) pro
gression. Our third experiment regressed the 1-year change in MoCA in 
the 71 PD patients with available MoCA scores. We used the initial 
MoCA score as an additional covariate and do not use the initial MDS- 
UPDRS-III score, but otherwise followed the same experimental setup 
as the 1-year regression of MDS-UPDRS-III. 

We additionally tested if calculating the levodopa equivalent daily 
dose (LEDD) that each patient received aided in the prediction of UPDRS 
or MoCA progression. Of the 63 patients in the UPDRS prediction and 
the 71 in the MoCA prediction, only 19 had adequately collected 
medication data to effectively calculate the LEDD. LEDD was calculated 
with the formula outlined in Supplemental Section 10.10. The LEDD 
for these subjects had a mean of 137.8 mg, a median of 118.9 mg, and a 
range of 0–450.6 mg of Carbidopa-Levodopa IR equivalents. We reran 
our search process using only the highest performing augmentation 
strategy using LEDD as a covariate. Since XGBoost can handle missing 
data with high fidelity (Chen and Guestrin, 2016), this experiment tested 
whether we can leverage the sparse LEDD data for additional perfor
mance benefit. 

3. Results 

3.1. Experiment 1: Diagnosis of PD vs PSP vs MSA vs normal control 
(NC) 

Fig. 2a shows the test performance as measured by balanced accu
racy for assigning a diagnosis from PD, PSP, MSA, and NC. Chance 
balanced accuracy is 0.25. Using partial correlation connectivity at an 
augmentation factor of 10, when combined with clinicodemographic 
correlates, achieves the highest balanced accuracy of all combinations: 
0.68 using univariate dimensionality reduction and 0.65 with the PCA 
dimensionality reduction. It also achieves an F1 score of 0.67. For this 
top performing model, the one-vs-all classification accuracy across the 
ten outer cross-validation folds of HC vs not HC was 0.85, PD vs not PD 
was 0.72, PSP vs not PD was 0.95, and MSA vs not MSA was 0.80. Note 
that the balanced accuracy better represents the overall performance, 
though individual one-vs all classification accuracies are provided for 
completeness. We performed a t-test to evaluate the null hypothesis that 
the distribution of balanced accuracy across all folds is different than the 
chance balanced accuracy. We then performed multiple comparisons 
correction using the Benjamini Hochberg procedure at a false-discovery 
rate (FDR) of 0.05. The resulting p-value was 7.6E-5 for the univariate 
case and 7.6E-5 for the PCA case. The differences between top- 
performing methods are not statistically significant. In general, univar
iate dimensionality reduction provided better performance than PCA 
dimensionality reduction. Additional metrics are presented in Supple
mental Section 10.5. 

3.2. Experiment 2: Prognosis of motor symptom (MDS-UPDRS-III) 
progression 

The held-out test performance (as measured by MAE) predicting the 
1-year change in MDS-UPDRS-III is shown in Fig. 2b. Chance MAE is 3.9 
and was calculated by predicting the median change in MDS-UPDRS-III 
for all subjects. The best (lowest) MAE of 1.8 was achieved by the partial 
correlation connectivity metric using an augmentation factor of 20 and 
univariate dimensionality reduction, which also achieved an R2 of 0.69. 
The corresponding FDR-corrected p-value (testing the H0 that the MAE 
is truly different from the chance MAE of 3.9) was 6.0E-7. The best- 
predictor using an EC measure (SP.GC with PCA dimensionality reduc
tion) was slightly worse, but still achieved a respectable MAE of 2.0, an 
R2 of 0.59, and a p-value of 2.0E-6. On average across multiple 
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connectivity measures and augmentation factors, the PCA dimension
ality reduction technique outperformed the univariate dimensionality 
reduction technique. The top performing methods and measures were 
similar in outcome (i.e. no statistically significant differences between 
the top performers was observed). See Supplemental Section 10.6 for 
additional metrics for every predictor. 

3.3. Experiment 3: Prognosis of cognitive symptom (MoCA) progression 

Fig. 2c shows held-out test performance of models predicting the 1- 
year change in MoCA. Chance performance was an MAE of 1.6. The 
lowest MAE of 0.60 across predictive feature sets and a best R2 of 0.81 
was achieved using a model with the partial correlation connectivity 
metric, PCA dimensionality reduction and an augmentation factor of 
20x. The FDR corrected p-value was 4.0E-5. The best EC performance 
was achieved with the SP.GC features with univariate dimensionality 
reduction and an augmentation factor of 10x. This approach achieved an 
MAE of 0.61, R2 of 0.79, and FDR corrected p-value of 8.6E-5. The 
models using the PCA dimensionality reduction performed equally as 
well as the univariate dimensionality reduction overall. Additional 
metrics are shown in Supplemental Section 10.5. 

In our secondary experiment testing LEDD as a predictor, no 

statistical improvement was found when including LEDD as a covariate. 
This does not mean that there is no predictive information in LEDD as a 
covariate, but rather that this level of sparsity in the data doesn’t permit 
us to appropriately learn the predictive signal, if any. These results are 
further outlined in Supplemental Section 10.10. 

3.4. Primary experiment summary 

Experiments 1–3 achieve results comparable to or significantly better 
than previous attempts at diagnosis or progression. Table 3 (Discussion) 
compares these results to other state of the art diagnostic and prognostic 
methods. Our MDS-UPDRS-III prognostic model improves on previous 
best MAE from 3.22 to 1.8, and our MoCA prognostic model improves on 
previous best MAE from 0.74 to 0.60. 

3.5. Augmentation sensitivity analysis 

The results of Experiments 1–3 demonstrate the significant advan
tages of fMRI augmentation when training predictive models. To probe 
further the augmentation benefits, we conducted a sensitivity study. 
This study showed the largest benefit from augmentation occurred be
tween 1 and 3x, or 2-4x the original dataset size. This suggests that the 

Fig. 2. Diagnosis and prognosis of PD. This figure shows the performance of models trained to predict various targets with different connectivity features and levels 
of augmentation. The left column (A-C) shows the predictive performance of models trained with a PCA dimensionality reduction step while the right column (D-F) 
shows the predictive performance of models trained with a univariate dimensionality reduction step. The first row (A and D) shows the balanced accuracy when 
making a NC/PD/PSP/MSA diagnostic classification, while the second and third rows show the mean absolute error (MAE) predicting the 1-year change in either 
MDS-UPDRS-III (B and E) or MoCA (C and F), respectively. The bar colors correspond to the connectivity method used. The dashed blue lines show chance accuracy. 
For the diagnosis task, standard clinical accuracy is also shown. For the prognostic tasks, the clinically important difference (CID) is also shown as dashed gray lines. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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models begin to learn the variation in the disease presentation, when the 
number of subjects approaches 150–200 subjects, and that future diag
nostic and prognostic PD studies might target upwards of 200 subjects. 
For further sensitivity study results see Supplemental Section 10.6. 

Identification of the most predictive features (covariates). 
To identify the multivariate features most associated with a given 

outcome, we analyzed the important principal components for each of 
the prognostic tasks, as the PCA reduced models performed better on 
average than the univariate-reduced models. This revealed the multi
variate associations of both causal and correlative features to the 
prognostic outcomes. Unlike the prognostic models, the best diagnostic 
model used clinicodemographic features alone. The important diag
nostic features are listed in the supplement. 

To maximize the reproducibility of imaging biomarkers, we identify 
features with high importance across multiple models. This consensus 
approach of identifying important features has been shown to be more 
generalizable than features identified with a single model (Botvinik- 
Nezer, 2020; Mellema and Montillo, 2023). We take the 10 most pre
dictive hyperparameter configurations on each inner loop of training 
and retrain the corresponding XGBoost models on the entire dataset 
each. This allows us to estimate distributions of importance across these 
features. We use the Gini feature importance weighted by the number of 
samples routed through any given decision node as our feature impor
tance metric for these XGBoost models. We analyze in greater depth the 
best FC and best EC connectivity features, namely those from Partial 
Correlation and SP.GC, respectively. We perform this analysis across 

Table 3 
Comparison to the literature. The performance of similar diagnostic and prognostic models in the literature is compared to the performances achieved in this paper. The 
performance of the best Partial Correlation and best SP.GC models was not significantly different from each other, but both are significantly better than competing 
models. The reference, data type, modeling approach, and final performance for each diagnostic and prognostic model are shown. This paper’s results are highlighted 
in grey, and the best performances are highlighted as bold italic text (Chahine et al., 2019; Nguyen et al., 2021; Son et al., 2016).  

*= task-based treated as rest, † = RMSE, †† = most severe tertile versus least severe only, ¶ = current (not change over time), § = r provided, R2 approximated. 
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both progression tasks (change in MDS-UPDRS-III and change in MoCA). 
Fig. 3 shows the calculated feature importances across these tasks. The 
Partial Correlation and SP.GC features for both the MoCA and MDS- 
UPDRS-III tasks use just the first component of the PCA decomposi
tion, and that component is more important to the diagnostic model than 
any single feature (not pictured: the univariate R2 between the first 
component and the target varies from 0.02 to 0.11). Fig. 3A-D shows 
that the total importance of the clinicodemographic features exceeds 
that of the connectivity features, but that the connectivity importance is 
highest in isolation. 

As all models converged on using just the first principal component 

to achieve maximal validation performance, Fig. 3E-F shows a visuali
zation of the first principal component. For context, each principal 
component weighs every edge in the set of connectivity matrices with a 
contribution to that component and the components are ordered by the 
variance across the data the component explains. The first component 
used by the model captures the most variance across the connectivity 
matrices. This visualization summarizes the weight per edge of the 
graph of connections between every ROI as a single, interpretable image. 
This is done by summing the weighted contribution of every edge 
feeding into and out of a ROI to get a scalar value per region. In this way 
the spatial contribution that the principal component represents can be 

Fig. 3. Feature importances. This figure shows the importance of features and visualizes the connectivity features used by the prognostic models enumerated earlier. 
Panels A-D show the importance (and 95 % CI) of the features with the highest average importance across the top 10 PCA dimensionality reduced XGBoost models on 
the ΔMDS-UPDRS-III and ΔMoCA prediction tasks. The clinicodemographic features are presented left to right in descending order of importance followed by the 
connectivity features presented left to right in order of descending importance. The principal components were fit across all data, using the same components for both 
the ΔMDS-UPDRS-III and ΔMoCA tasks. A shows the feature importances from models using Partial Correlation features to predict ΔMDS-UPDRS-III. B shows the 
feature importances from models using SP.GC features to predict ΔMDS-UPDRS-III. C shows the feature importances from models using Partial Correlation features to 
predict ΔMoCA. D shows the feature importances from models using SP.GC features to predict ΔMoCA. E and F show the total weighted degree of each brain region 
in the connectivity graph of edge contribution to principal component 1. E shows the weighted degree of the Partial Correlation PC contributions. F shows the 
weighted degree of the SP.GC PC contributions. 
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graphically depicted across the brain using the weighted degree of each 
brain region. For the component from the Partial Correlation connec
tivity measure, (Fig. 3E), edges are observed that involve the deep nuclei 
and thalamus, as well as primary and secondary motor areas which are 
of high importance (>90 percentile) (See Supplemental Figure S4 for a 
secondary visualization showing the top edges). We also observe con
tributions from the occipital lobe and prefrontal cortex. The important 
regions in this component are similar to the default mode network 
(DMN), with the addition of several deep brain motor nuclei. The sim
ilarity with the DMN is also observed to have substantial involvement of 
the posterior cingulate cortex and precuneus. The component from the 
SP.GC connectivity measure (Fig. 3F) has greatest involvement of edges 
incident upon the deep nuclei and thalamus, with lesser contributions 
from similar regions as the Partial Correlation-based component. The 
primary difference between the Partial Correlation- and SP.GC-based 
components is the greater importance the SP.GC component places on 
the deep nuclei. This visualization indicates that connections from deep 
nuclei to prefrontal areas are significant in these important principal 
components. 

When examining the components in ensemble, rather than individual 
nodes, the executive control network (ECN) is most strongly implicated 
in the prognostic task – specifically in the heavy involvement of intra- 
ECN connections in the component. Second most implicated on a 
network-level is the salience network, or ventral attention network, 
including connections to and from the salience network in addition to 
intra-salience network connections. We direct the reader to Supple
mental Section 10.9 and Supplemental Figure S5 for a more in-depth 
analysis of the intra and inter-network analysis and discussion. 

4. Discussion 

4.1. Comparisons to prior work 

In the diagnostic task, we achieved a balanced accuracy of 0.68, 
which is well above chance balanced accuracy (0.25) as well as above the 
accuracy (0.63) attained in general clinics (Hughes et al., 2002). This 
diagnostic performance was achieved without significant contribution 
from data present in fMRI as described in the results section above (i.e. 
from clinicodemographic data alone). We note however that using 
modalities other than fMRI, higher performance has been reported. To 
appreciate this a comparison of the methods predicting the diagnosis of 
PD is shown in the top panel of Table 3. For the diagnosis task, the best 
balanced accuracy is 0.83, reported by Zhang and colleagues (Zhang 
et al., 2020), using T1-weighted (MPRAGE) MRI containing information 
primarily about the shape and volume of neuroanatomical structures. 
Meanwhile, Chougar et al. (Chougar et al., 2021) attained a balanced 
accuracy of 0.77 using diffusion-weighted MRI containing information 
primarily about the static structural connectivity between brain regions. 
Given that the clinicodemographic features used were similar, this 
suggests that the diagnostic signal present in the functional connectivity 
of 3 T fMRI is weaker than the signal present in other MRI contrasts. 
Further experiments are warranted to determine the degree of comple
mentarity between the functional signals from fMRI with the structural 
ones in DTI and T1, and the benefits from their integration. 

For the two longitudinal progression tasks of motor and cognitive 
decline, our results attain a new state-of-the-art level of performance. 
Previous attempts to perform these longitudinal measures of prognosis 
have found MAEs in the longitudinal prediction of MDS-UPDRS-III of 
3.22 to 14.0 and R2s of 0.44 to 0.56, using fMRI, SPECT, genetics, and T1 
MRI. Using our recently proposed connectivity measures, we achieve an 
MAE of 1.8, an R2 of 0.69 significantly greater than chance, with a p- 
value of 6.0E-7. Our results are reported on held our test data, using a 
nested-cross validation model construction approach with careful 
isolation of training, validation, and test. A comparison of the methods 
predicting MDS-UPDRS-III is shown in the middle panel of Table 3. The 
longitudinal prediction of MoCA is comparatively understudied. While 

studies have predicted the longitudinal progression of PD patients from 
“cognitively normal” to “minor cognitive impairment” (Lin et al., 2021; 
Silva-Batista et al., 2018), there is a dearth of attempts to regress more 
quantitative PD cognitive measures longitudinally. To our knowledge, 
such an attempt has only been published by Zeighami and colleagues to 
date (Zeighami et al., 2019). They used only the least and most severe 
terciles for their prediction, dropping the more difficult-to-predict inner 
tercile. We predict across all ranges of MoCA progression and achieve a 
superior performance including both a lower MAE and higher R2 than 
previous attempts. A comparison of the methods predicting cognition is 
shown in the bottom panel of Table 3. 

4.2. Significance 

Overall, the proposed methods attain excellent (low) MAEs on the 
held-out test data for both predicting motor decline (change in MDS- 
UPDRS-III) and cognitive decline (change in MoCA). An ideal model 
would have an error in prediction less than the clinically important 
difference (CID) in scores; i.e. the difference where treatment decisions 
are significantly different. Horváth et al. suggests that the CID may be 
asymmetric, suggesting a CID for improvement of 3.25 and a CID for 
worsening of 4.63 (Horváth et al., 2015). We chose to use the more 
stringent suggested CID of 3.25 for our analysis here. Our model’s MAE 
is below the smallest CID, therefore, we observe that our models ability 
to predict motor decline meets this bar for clinical utility. For the pre
diction of cognitive decline, Wu et al. identified a minimal CID in MoCA of 
1.22 for stroke patients (Wu et al., 2019). While there is not yet a similar 
study identifying CID for cognitive decline for PD patients, there are 
measures of clinically meaningful cognitive decline in stroke patients. 
This threshold for a significant difference in cognitive scores in stroke 
serves as a proxy target until such time as additional work defines a 
cognitive CID in PD patients. Upon comparison then, we observe that 
our models predicting cognitive decline meet this bar for clinical utility, 
though further work needs to be done to better define thresholds for 
cognitive outcomes in PD specifically. Finally, we achieve a balanced 
accuracy for the diagnosis of PD versus other Parkinsonian syndromes 
which compares favorably to the accuracy achieved in non-specialty 
clinics (Hughes et al., 2002). These results meet our objectives of 
providing accurate diagnostic and prognostic tools using noninvasive 
biomarkers which can be further analyzed to potentially examine 
pathophysiologic differences. Our findings corroborate previous sug
gestions of a robust functional connectivity signal of PD pathophysi
ology and extend the previous work in univariate predictors of 
longitudinal prognosis (Burciu et al., 2016; Hou et al., 2017; Manza 
et al., 2016; Simioni et al., 2016) to a multivariate predictive model. 
While our work found a multivariate component using many regions and 
edges was predictive of progression, certain edges and nodes that are of 
particularly high importance to this component are noteworthy: Those 
implicated regions include: diffuse involvement within the executive 
control network, the salience/ventral attention network’s connectivity 
to other large-scale brain networks, and an extensive involvement of all 
major brain networks to a lesser degree all are implicated by this work. 
This has been corroborated by previous work which notes broad 
degradation across diffuse cognitive networks (Mitchell et al., 2021; 
Tahmasian et al., 2015; Tuovinen et al., 2018). The involvement of these 
networks implies some level of dysfunction at a global, or near global 
level, is an early warning of faster disease progression. Singular nodes 
that were identified as being particularly important in the multivariate 
predictor include those in the thalamus, putamen, caudate, pallidum, 
primary and secondary motor areas, and prefrontal cortex – many of 
which have been similarly implicated in progression (Burciu et al., 2016; 
Simioni et al., 2016; Wu et al., 2012). The involvement of motor areas 
specifically should be interpreted with caution due to the “task-as-rest” 
assumption in our analysis, but the other implicated areas are important 
brain hubs of connectivity where subtle multivariate changes might be 
most anticipated to first be revealed. The network and nodal results 
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taken together suggest that early indication of severity and progression 
in both motor and cognitive domains may be indicated first with subtle, 
brain-wide changes in modulating networks and hubs, rather than 
concentrated to a singular motor-implicated region, as you might expect 
in a disease with many motor symptoms. The significance of these 
diffuse modulatory changes in many networks is harder to interpret, but 
indicates that we should consider broadening our searches for patho
physiologic understanding in future experiments and treatment devel
opment. Finally, while the confounding effect of medication can 
obfuscate the results of longitudinal studies, our results mitigate this 
effect by using fMRI and MDS-UPDRS-III scores acquired when the pa
tients have weaned overnight from medication use. 

Across predictive targets, we found that Partial Correlation and SP. 
GC measures of connectivity are robust to overfitting as they performed 
well, never dropping below chance performance, regardless of the level 
of augmentation. The differences in final performance between the best 
Partial Correlation and best SP.GC models were statistically indistin
guishable and such performance similarity may indicate a convergence 
to a common underlying signal. 

The impact of connectivity measure choice and augmentation 
amount applied varied depending on the prediction task. For the diag
nostic task, augmentation provided minor performance benefit and the 
choice of connectivity measure had minimal effect. For the prediction of 
longitudinal motor decline using MDS-UPDRS-III augmentation signifi
cantly improved performance, with an augmentation factor of ≥ 5x 
producing the most accurate results. For the prediction of longitudinal 
cognitive decline with MoCA augmentation was beneficial and the 
choice of connectivity measure had a lesser effect. 

4.3. Limitations and future directions 

This work uses the PDBP dataset because the study acquired all 
measures including imaging and symptomatology in the OFF- 
medication state, which mitigates the strong levodopa medication 
confound known to affect both the brain scans and the MDS-UPDRS-III 
rating. The OFF-medication state is only a wean of 12 h. We acknowl
edge that while this has been shown sufficient for much of the effects of 
L-DOPA to wear off, it is not a true “OFF” state, as effects of longer-acting 
medications have not fully worn off. Also this approach does not miti
gate long-term connectivity changes that could be caused by L-DOPA 
administration. However, a short wean is much safter and more 
comfortable for the patient, so extending the OFF-medication state could 
be problematic. Currently, PDBP is the largest database of PD with OFF- 
medication measures and has been relatively understudied. For 
increased clinical utility, it would be useful to extend the models 
developed herein to predict multiple years ahead, with data from a 
multi-year longitudinal study rather than the single year of tracking 
which is what is currently available in the PDBP fMRI data subset. 
Additionally, long fMRI acquisitions of at least 12 min (Birn et al., 2013) 
with true resting state, rather than task fMRI treated as rest, may also 
boost signal and further increase model prediction performance. It is 
likely that differences in performances across connectivity measures will 
become more apparent as the length of the fMRI acquisition increases 
and we move to rest, rather than task-based fMRI. Alternatively, the 
task-based fMRI in question here may have additional analysis oppor
tunities with further extension of classical and our newly proposed 
connectivity measures, though the use of task-based paradigms limits 
broad applicability due to potential difficulties in consistently applying 
these tasks outside of research settings. We also acknowledge that PD 
diagnosis is defined here by extensive expert clinical evaluation, but a 
truly definitive diagnosis would use postmortem pathological diagnoses 
(Surmeier et al., 2017). The diagnostic accuracy of the PDBP study is 
likely similar or better than that found by Jankovic et al.; who found a 
PSP vs MSA vs PD vs other clinical diagnostic accuracy of 92.6 % 
confirmed by post-mortem studies when the diagnostician was a 
movement disorder specialist who followed the patient for several years 

(Jankovic et al., 2000). A consensus amongst multiple movement dis
order experts tracking the patient over multiple years (such as used in 
this study) likely has even higher accuracy, though this has not yet been 
studied in the case of PD post-mortem diagnoses. However, this study 
does use a relatively short disease duration (3 years on average), and 
later evaluation of these patients when the differentiating phenotypes 
are more apparent would likely be more accurate and reflective of the 
true diagnosis of PD vs PSP vs MSA. Furthermore, the progression of 
12.5 points on the MDS-UPDRS-III is high, though some of this is 
explained by measurements being made in the OFF state. It is also 
possible that this dataset, acquired at a movement-disorder specialty 
clinic, is biased towards faster progressing cases of PD. Further explo
ration with larger datasets from different contexts is warranted. Finally, 
external validation can be performed to further bolster confidence in the 
model performance and feature importances. Currently, other datasets 
do not control for ON versus OFF-medication confounds, but we hope 
more studies in the future will acquire measurements of subjects while 
off all medication. This could be more representative of the inherent 
parkinsonism heterogeneity and would likely permit training higher 
performing models that are even more likely to generalize to disparate 
patient populations. 

5. Conclusions 

We have applied both classical and new causal measures of brain 
connectivity derived from fMRI, presented a novel framework for fMRI 
timeseries data augmentation, and applied rigorous hyperparameter 
optimization to construct XGBoost models that achieve state of the art 
accuracy in predicting an individual’s longitudinal decline in key met
rics of Parkinson’s disease. When predicting the 1-year change in motor 
function (MDS-UPDRS-III) and 1-year change in cognition (MoCA) for 
PD patients, we achieve an MAE of 1.8 and 0.60 respectively. These 
results surpass thresholds of clinical utility while using an imaging 
modality becoming more and more available in clinical settings. We 
identified specific connections that associate with improved prognosis. 
Our results confirm the presence of early, sensitive connectivity bio
markers of the progression of Parkinson’s disease, capable of accurately 
predicting even 1-year decline in motor and cognitive performances. 
Prognostic tools such as this could be used for subject selection for 
disease-modifying trials that have sufficient power to detect change 
despite the typically short trial duration because of enrichment for rate 
of deterioration. These results therefore can help identify effective 
candidate therapies, create potential for furthering the pathophysio
logical understanding of PD, and ultimately pave a path to provide pa
tients and clinicians alike with much-needed tools of clinically relevant 
prognostic indicators where none have previously existed. 
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