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Abstract
Objective. New measures of human brain connectivity are needed to address gaps in the existing
measures and facilitate the study of brain function, cognitive capacity, and identify early markers of
human disease. Traditional approaches to measure functional connectivity (FC) between pairs of
brain regions in functional MRI, such as correlation and partial correlation, fail to capture
nonlinear aspects in the regional associations. We propose a new machine learning based measure
of FC (ML.FC) which efficiently captures linear and nonlinear aspects. Approach. To capture
directed information flow between brain regions, effective connectivity (EC) metrics, including
dynamic causal modeling and structural equation modeling have been used. However, these
methods are impractical to compute across the many regions of the whole brain. Therefore, we
propose two new EC measures. The first, a machine learning based measure of effective
connectivity (ML.EC), measures nonlinear aspects across the entire brain. The second, Structurally
Projected Granger Causality (SP.GC) adapts Granger Causal connectivity to efficiently characterize
and regularize the whole brain EC connectome to respect underlying biological structural
connectivity. The proposed measures are compared to traditional measures in terms of
reproducibility and the ability to predict individual traits in order to demonstrate these measures’
internal validity. We use four repeat scans of the same individuals from the Human Connectome
Project and measure the ability of the measures to predict individual subject physiologic and
cognitive traits.Main results. The proposed new FC measure ofML.FC attains high reproducibility
(mean intra-subject R2 of 0.44), while the proposed EC measure of SP.GC attains the highest
predictive power (mean R2 across prediction tasks of 0.66). Significance. The proposed methods are
highly suitable for achieving high reproducibility and predictiveness and demonstrate their strong
potential for future neuroimaging studies.

1. Introduction

The connectivity of the human brain is integral to
cognitive capacity, can be an early marker for human
disease, and underlies the fundamental function-
ing of the central nervous system (Ashburner et al
2004). However, measuring connectivity in vivo has
proven problematic (Rowe 2010, Fiecas et al 2013,

Andellini et al 2015). Functional magnetic resonance
imaging (fMRI6) of the brain measures the blood-
oxygen-level-dependent (BOLD) signal and serves as
an indirect measure of neural activity. The brain scan

6 All abbreviations used in this manuscript are described in detail in
supplemental table S1
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can be parcellated into neuroanatomical regions and
the mean regional time series can be computed from
the voxels in each region. Bymeasuring temporal rela-
tionships between the mean BOLD signal from two
or more regions of the brain, the underlying direct
and indirect connectivity and communication within
the brain can be probed. The connections between
regions can then be used to represent the subject-
specific connectome as a connectivity graphwith each
region represented as a node in the graph, while the
edges between nodes are assigned an edge strength
proportion to the pairwise regional connectivity.

Connectivity measures are calculated from fMRI
using a measure of similarity or information trans-
fer between the mean regional BOLD timeseries of a
pair of regions. Connectivity metrics can be grouped
into undirected functional connectivity (FC) met-
rics and directed effective connectivity (EC) met-
rics. Functional connectivity is defined as the tem-
poral coincidence of spatially distant neurophysiolo-
gical events (Ashburner et al 2004) and it has been
used to characterize the human connectome in both
health and disease (Cohen et al 2017, Smitha et al
2017). FC is traditionally calculated as the correlation
or partial correlation between the regional timeser-
ies. Meanwhile, effective connectivity is defined as
the influence one neural system exerts over another
(Ashburner et al 2004). Broadly, this is a model-
dependent measure wherein the information transfer
between mean regional timeseries is quantified from
the goodness of fit of a model that predicts one of the
timeseries from one or more of the other timeseries.
Examples of EC measures include Granger causality
(Granger 1969, Spencer et al 2018, Abidin et al 2019,
Chockanathan et al 2019), dynamic causal model-
ing (Park et al 2018, Friston et al 2019), and struc-
tured equation modeling (SEM) (Rowe 2010), which
have been widely deployed for connectome charac-
terization. EC is inherently directional as it captures
the direction of information flow over time (Bielczyk
et al 2019). EC ismodel-dependent and requiresmore
computation than FC but suppresses spurious indir-
ect connections and identifies linkages that are poten-
tially causal and not simply correlated.

Traditional FC and EC measures have several
limitations, for which we propose new solutions.
Common FC measures include Pearson’s r, partial
correlation, and spectral Granger causality (Ding et al
2006). Each of thesemethodsmeasure a degree of lin-
ear association between two mean regional timeser-
ies; however, the actual relationship between mean
regional brain activity is nonlinear (Friston et al
2019). Therefore, we propose nonlinear machine
learning models that measure FC while capturing
such nonlinearities. Of the different EC measures, we
focus on Granger causal (GC) methods as they are
data-driven approaches that can be used when many
neuroanatomical regions, N, are to be analyzed (e.g.
N > 50). In modern fMRI connectivity analysis N is

often a hundred or more. Alternative causal models,
including dynamic causal models and SEMs, typically
apply an exhaustive search over possible connectiv-
ity patterns, making analysis at this ROI granularity
intractable for current compute hardware. Limiting
the connectivity to a subset of the brain, such as
intra-DMN connectivity, is often used as a work-
around, but this restricts the portion of the brain
under consideration and can miss important inter-
actions (Rowe 2010, Friston et al 2019). Granger
causal methods have limitations as well but these,
we hypothesize, are surmountable, including: model
selection procedures, regularization, scalability (the
traditional GC method requires fitting O(N2) sub-
models where N is the number of regions under
analysis), an inability to capture nonlinear interac-
tions, and the absence of the incorporation of prior
knowledge of brain architecture (Ashburner et al
2004). To address these limitations, we propose two
measures of effective connectivity. The first measure
which we call Machine-Learning FC (ML.FC), uses a
nonlinear machine learning model to quantify non-
linear pairwise timeseries associations. Our method
is more scalable because the number of required
models to fit scales as O(N). Our second meas-
ure, which we call Structurally-Projected Granger
Causality (SP.GC), reformulates Granger causal con-
nectivity in two ways. First, we regularize the con-
nectivity computation using a structural connectiv-
ity (SC) prior derived fromdiffusionMRI. Streamline
tractography is performed on diffusionMRI from the
Human Connectome Project (HCP) and a stream-
line atlas is generated (Yeh et al 2018). The log
of the number of streamlines connecting regions is
used as a measure of pairwise structural connectiv-
ity. This is used to regularize the functional inter-
actions inferred between regional timeseries via a
tradeoff between the raw functional data interactivity
and fiber bundle connectivity. As actual neural com-
munication occurs through physical connections, this
constraint is a natural choice of a prior to guide brain
FC (Allen andWeylandt 2019, Huang and Ding 2016,
Dillon et al 2017, Manning et al 2018, Maglanoc et al
2020). The secondwaywe reformulateGranger causal
connectivity is to perform dimensionality reduction.
Calculating the connectivity in a low dimensional
space affords several advantages including: simplify-
ing model optimization as there are fewer weights to
tune and providing further regularization to stabil-
ize fMRI interpretation and increase reproducibility.
This dimensionality reduction is achieved by project-
ing the mean regional timeseries into a low dimen-
sional space informed by the streamline SC prior.
Each of our proposedmeasures is evaluated for repro-
ducibility and the ability to predict cognitive and
physiological traits of the HCP participants in our
study.

A connectivity measure should produce a sim-
ilar connectivity matrix for a given individual across

2



J. Neural Eng. 20 (2023) 066023 C J Mellema and A A Montillo

repeat fMRI scans that are acquired within a short
window of time. Therefore, we evaluated the pro-
posed FC and EC measures reproducibility across
four repeated fMRI scans of each individual in our
HCP-derived dataset. A reproducible measure better
characterizes an individual’s connectivity fingerprint
and is therefore more useful to capture true differ-
ences between individuals (Waller et al 2017, Noble
et al 2019). Reproducibility is necessary, but insuffi-
cient to show that the proposed measures have valid-
ity; therefore we also measure the predictive power of
each FC and EC metric in three relevant domains: a
purely physiological domain predicting mean arterial
pressure, a purely cognitive domain measuring fluid
intelligence, and a combined physiologic and cog-
nitive domain measuring stress. These were chosen
as representative targets of interest of researchers
and clinicians interested in predictions for physiology
(e.g. stroke, aging), cognition (e.g. memory, PTSD),
or a combination of the two (e.g. stress, neurodegen-
eration) for diagnoses and treatment. Measures that
are both reproducible and have consistently high pre-
dictive power across multiple tasks are significantly
more useful as candidate biomarkers (Termenon et al
2016, Waller et al 2017, Noble et al 2017a, 2017b). We
postulate that a measure that is both more reprodu-
cible and predictive is a better representation of true
underlying neural patterns than alternative meas-
ures. The contributions of this work are: (1) the
development of a new functional connectivity met-
ric (ML.FC) and a new effective connectivity met-
ric (ML.EC) that efficiently capture nonlinear asso-
ciations between brain regions, (2) the development
of a new effective connectivity metric (SP.GC) that
incorporates a SC prior while efficiently measuring
associations across all brain regions in a low dimen-
sional space, (3) a quantitative comparison of the pro-
posed measures to traditional measures of connectiv-
ity in terms of reproducibility and the power to pre-
dictive traits of individual subjects. Finally, (4) we
recommend individual measures that hold the most
potential to advance the study of human brain con-
nectivity in health and disease based on the quantit-
ative comparison.

2. Methods andmaterials

2.1. Methods
2.1.1. Proposed machine learning-based functional
connectivity (ML.FCmeasures)
Characterizing brain connectivity to better under-
stand both health and disease is a complex pro-
cess requiring measuring both linear and nonlin-
ear aspects of information transfer between brain
regions. Classical means of performing this charac-
terization include the use of Pearson’s r, partial cor-
relation, and spectral Granger causality. (For defin-
itions of classical measures of FC, see supplemental
section 9.1.2.) Central to this premise, we propose the

construction of a machine learning model to calcu-
late functional connectivity, an approach we denote
as ML.FC. This model predicts the activity, a, at a
given node j by using the information present at all
other nodes (brain regions) at any given time, t. As
illustrated in equation (1), we use a nonlinear model
M to predict the activity at region j at time t from all
other regions under analysis R except region j

aj,t =M
(⃗
ai∈R\j,t

)
+ εj,t, a= activity, ε= error .

(1)
This model simultaneously learns the association

between all other nodes’ activity and the target node
j. The weight assigned to each covariate quantifies the
amount of information the model is using from that
node to predict the target node j, which is a putative
measure of the connectivity between each node i and j.
This draws on the theory of Granger causality which
uses the coefficients of a bilinear model to quantify
instantaneous information transfer (i.e. the relation-
ship between signals at a fixed single time t) by pre-
dicting the activity of node j at time, t, from other
nodes, i, with a linear model (Ding et al 2006, Luo
et al 2013).

For resting state fMRI, we want to derive a meas-
ure of functional connectivity between every set of
nodes, resulting in a functional connectivity (FC)
matrix. Our procedure using the covariate weights
from the predictive model populates one row of the
FC matrix at a time. If we repeat the process for
each region, we fill the entire FC matrix by fitting
N models. The choice of model M determines what
associations we can detect between regions from the
predicted covariate weights, which enables granular
modeling control compared to previous attempts that
use only one model (Murugesan et al 2020). In this
work we allow M to be any of the following mod-
els: (1) the extremely random trees model (ERTs), (2)
nonlinear radial basis function kernel support-vector
machine regressor (SVM), (3) Extreme Gradient
Boosting forest models (XGB) (Chen et al 2016).
The ERT was chosen because it produces high per-
formance across a wide domain of machine learn-
ing applications (Feczko et al 2018, Mellema et al
2022). The SVM was chosen because it is a high-
performing machine learning model which has a
more directly interpretable and explicit weights than
the ERT (Deshpande et al 2010, Arora et al 2018,
Mellema et al 2022). The XGB was chosen because
it tends to have higher performance than the ERT,
andhandlesmulticollinearity from repeated data sub-
sampling, which we hypothesize will better handle
correlated regional information than the ERT.

For each proposed model, we use the following
model fitting approach. First, themean timeseries per
region is standardized with a mean of 0 and unit vari-
ance. Then, a model is fit to predict regional activ-
ity at node j at every time t from other all other
nodes i at each time t. Then, a measure of feature
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Algorithm 1. GC algorithm. This algorithm describes the steps by which one calculates an effective connectivity matrix E from a neural
timeseries X using a standard Granger-causal approach. Xi

t = neural activity matrix of size i by t, where i ∈ [1,N] and where t ∈ [1,T].
T= number of timepoints. τ =max lag. f= timeseries predictor function. j= secondary indexer from 1 to N. Ei,j = effective
connectivity matrix of size NxN, indexed by i and j. r= reduced timeseries predictor function without region j. σ = standard deviation.

Inputs: Xt
i, (i ∈ [1,N], t ∈ [1,T]),τ , f ; Input timeseries with number of regions N, number of timepoints T, max lag

τ , timeseries predictor f ;
Output: E; Output effective connectivity matrix E;

for i:= 1 to N do Full model fit For the initial regional timeseries X with N regions fit a full model including
region j;

Xt
i = f(Xt−1,Xt−2, ...,Xt−τ ); Fit f predicting activity X at time t and node i from times t−1, ..t−τ ;

for j:= 1 to N do Reduced model fit Fit a reduced model without region j;
X′ = Xj \N; Drop column j from timeseries X;
X′

t = r(X′
t−1,X′

t−2, ...,X′
t−τ ); Fit r predicting activity X at time t and node i from times t−1, …t−τ

without node j;
Ei, j = log (σ(fer r or)/σ(rer r or)); The EC score between i and j equals the log of the ratio of the standard

deviation of the residuals of the full and reduced model;end
end

weight or importance is extracted from the model
for each nodal covariate i. We repeat this for each
node j to fully populate an asymmetric FC mat-
rix. The asymmetric matrix is then symmetrized by
averaging itself with its transpose. Feature import-
ance is calculated from the Gini importance for the
ERT, the covariate weight for the SVM, and the Gini
importance weighted by number of samples routed
through the decision node for the XGBoost model.
The XGBoost model was fit with a group-level hyper-
parameter search. The ERT and SVM models did
not benefit from this search; their default paramet-
ers were already optimal. The hyperparameter eval-
uations were done on HCP data NOT used in train-
ing, validation, or testing. For additional model fit-
ting details see supplemental section 9.1.3. In order to
evaluate the relative benefits of each proposedML.FC
measure, we test each FC measure’s reproducibility
and evaluate its predictive power by using it to infer
three individual traits of interest (see section 2.4).

2.1.2. Background of effective connectivity
In addition to functional connectivity, brain
connectivity can be quantified with measures
of time-delayed information transfer, which we
denote as effective connectivity measures. Effective
connectivity can be quantified in numerous ways:
multivariate Granger-causal (GC) scores (Spencer
et al 2018, Abidin et al 2019, Chockanathan et al
2019), bilinear GC modeling (Luo et al 2013), and
other measures of directed neural influence (Bielczyk
et al 2019). This paper builds new measures from the
mathematical foundation of Granger causal model-
ing. GC measures define a directed edge by quanti-
fying how the past history of activity signal B from
a particular brain region informs the future activity
of signal A, from another brain region. In neuroima-
ging, signal B is said to be Granger causal of signal
A if a model to predict the future of A given all past
information from all regions’ signals including B is

more accurate than a model that does not include
B. The degree of causality is called the GC score
(Granger 1969). To generate a Granger causal effect-
ive connectivity matrix, the Granger score between
the regional time courses from each pair of regions
is calculated using the GC algorithm (algorithm 1).
A full model, f, is fit to predict activity in region i
at time t from the past history of all regions. Then,
a reduced model f ’ is fit to predict the same activ-
ity at time t from the past history of all regions
except j. The EC score is the log of the ratio of
the standard deviation of the residuals of the full
and reduced models. By using a linear model f, a
baseline measure of effective connectivity can be cal-
culated. The linear models with which we calculate
the GC score include: an unpenalized multivariate
autoregressive (MVAR) model denoted MV.GC, an
elastic MVAR model with a small L1 and L2 pen-
alty (L1 = L2 = λ = 0.1) denoted MV.GCE:λ=0.1,
and an elastic MVAR model with a large L1 and L2
penalty (λ =10) denoted MV.GCE:λ=10. These reg-
ularization amounts were chosen empirically to be
representative of strong and weak regularization. The
timeseries is tested for significant autoregression with
the Augmented Dickey Fuller test and any significant
autoregression is removed prior to model fitting. Lag
values of 1-5 times repetition time (TR) were tested
and the model using the lag with the lowest Akaike
information criterion was selected independently for
each regional model.

Next, we will build upon this classical GC found-
ation in two ways: by replacing the GC’s linear MVAR
model with a nonlinear multivariate7 machine learn-
ing model (explained in section 2.1.3), and by fitting
the GC models in a lower dimensional space with a
dimensionality reduction that also enforces biological
constraints from SC (explained in section 2.1.4).

7 We use the term multivariate to indicate a multivariable model
with multiple independent variables.
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Algorithm 2. ML.EC algorithm. This algorithm describes the steps by which one calculates an effective connectivity matrix E from a
neural timeseries X using a standard machine-learning effective connectivity. Xi

t = neural activity matrix of size i by t, where i ∈ [1,N]
and where t ∈ [1,T]. T= number of timepoints. τ =max lag. f= timeseries predictor function. G=operator which calculates the
importance score of a given model, this is the Gini impurity in a tree-based model or weight in an SVM-based model. j= secondary
indexer from 1 to N. C=total number of unique samples in X. P=proportion of data routed through split. p=probability of data routed
to a split. w=classification vector of SVM. η=learned regularization parameter, θ = learned transform of x, b= SVM bias,
Ei,j = effective connectivity matrix of size NxN, indexed by i and j.

Inputs: Xt
i, (i ∈ [1,N], t ∈ [1,T]),τ , f ; Input timeserieswith number of regions N, number of timepoints T, max

lag τ , timeseries predictor f ;
Output: E; Output effective connectivity matrix E;

for i:= 1 to N do Full model fit For an initial regional timeseries X with N regions fit a full model
including region i;

Xt
i= f(Xt−1,Xt−2, ..,Xt−τ ); Fit a machine learning model f predicting activity X at region i at time t

from times t−1, …t−τ ;
if f= ERT or XGB then If an XGBoost or extremely random trees predictor;

G(f)j =ΣC
n=1 P(p(n)

∗1−p(n)); Importance score between i and j equals the Gini impurity for feature j
with probability of the data being routed down a split p, proportion of data
routed to that split P, set of all nodes that use feature j of C;

else if f= SVM then If a support vector predictor;
G(f)= w | (min||w||2 +CΣ(ηi)): Importance score is the weight given feature j by classification vector w

given the support vector optimization with regularization terms η, θ, b;(yi (w ·θ(xi)+b)⩾ 1−ηi,ηi ⩾ 0);
Ei =G(f ); The EC score between i and j is the feature importance for j of the model f

predicting i;end

2.1.3. Proposed machine learning-based effective
connectivity (ML.ECmeasures)
Wepropose a novel ECmeasure usingmachine learn-
ing model coefficients as in section 2.1.1, but with
a time-delay lag, τ , included. The machine learn-
ing model predicts future timesteps given up to τ

past timesteps and identifies the important learned
features of that model, (algorithm 2). Compared to
GC, our proposed measure captures directed influ-
ence with only onemodel fit per region analyzed, and
thereby scales as O(N) rather than O(N2) where N
is the number of regions. Furthermore, the machine
learning approaches capture nonlinear interactions
which the standardGC approaches do not.We denote
thisMachine learning effective connectivity approach
ML.EC. We test both ML.EC with an extremely ran-
dom trees internal predictor (denoted .ECERT) and a
support vector regressor with a radial basis function
kernel, denotedML.ECSVM.

2.1.4. Proposed structurally-projected effective
connectivity (SP.GCmeasures)
We also propose another novel EC measure which
projects the Granger causal models into a lower
dimensional space informed by a prior from diffu-
sion MRI. This is a soft constraint which regularizes
the EC measure to have at least some agreement with
known physical pathways of communication (Huang
and Ding 2016, Dillon et al 2017, Manning et al 2018,
Allen and Weylandt, 2019, Maglanoc et al 2020). We
denote this Structurally Projected Granger Causality
approach SP.GC, (see algorithm 3). This approach
projects the timeseries into a lower dimensional rep-
resentation and calculates a full and a reduced model
in the lower dimensional space before projecting the

predicted activity back into the original space and
calculating the error in full versus reduced mod-
els. This encourages but does not force, low dimen-
sional timeseries components to lie along known
structural networks. This approach also incorpor-
ates a sparsity constraint from sparse PCA. Sparse
PCAminimizes the number of nonzero terms in each
principal component while maximizing the variance
explained by the components (Zou and Xue 2018).
This sparsity prior and the prior from the SC matrix
derived from diffusion MRI encourages these com-
ponents to robustly represent a physically connected
sub-network of the brain.

We implement a SC constraint which encourages
a more faithful interpretation the underlying brain
functional from fMRI as true functional connectiv-
ity lies sparsely along physical connections (Huang
and Ding 2016, Dillon et al 2017, Manning et al 2018,
Allen and Weylandt 2019, Maglanoc et al 2020). The
physical connectivity prior comes from a SC mat-
rix derived from diffusion MRI. The SC matrix is
calculated from the average normalized tractogram
from all 1065 subjects in the HCP computed in (Yeh
et al 2018). We use a population-level prior so that
it may be applied even when diffusion MRI is unavail-
able for every individual in a study. The strength of
the SC between each pair of brain regions is com-
puted from the number of tractography streamlines
passing through each region of interest in this nor-
malized, ensemble atlas. Then the log of the total
number of streamlines between each region is used
as the prior. See supplemental section 9.1.4 for fur-
ther details. There are a plethora of both direct and
indirect connections in the brain, and both dir-
ect and indirect connections are captured through
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Algorithm 3. SP.GC algorithm. This algorithm describes the steps by which one calculates an effective connectivity matrix E from a
neural timeseries X using a standard GC approach. Xi

t = neural activity matrix of size i by t, where i ∈ [1,N] and where t ∈ [1,T].
T= number of timepoints.Φ = transformation matrix from learned lower-dimensional transform. τ =max lag. θ = low-dimensional
representation of neural activity matrix X. f=timeseries predictor function. j= secondary indexer from 1 to N. Ei,j=effective
connectivity matrix of size NxN, indexed by i and j. r= reduced timeseries predictor function without region j. σ = standard deviation.

Inputs: Xt
i, (i ∈ [1,N], t ∈ [1,T]), Φ, τ , f ; Input timeseries with number of regions N, number of

timepoints T, transformation matrix Φ from prior-informed
sparse PCA (equation (2)), max lag τ , timeseries predictor f ;

Output: Effective connectivity matrix E; Output effective connectivity matrix E;

for i:= 1 to N do Full model fit For the initial low dimensional regional timeseries θ fit a full
model including region j in the low dimensional projection;

θ = X·Φ; Project the initial regional timeseries X to structurally
constrained subspace θ using transformation matrix Φ
(equation (2));

Xt
i = f(θt−1,θt−2, ..,θt−τ ) ·ΦT; Fit f predicting activity X at time t and node i from θ at

times t−1, …t−τ ;
for j:= 1 to N do Reduced model fit Fit a reduced model without region j;

θ ′ = X·Φj \N; Project into structurally constrained low dimensional space θ
with Φj \N, the transformation matrix withcolumn j
removed;

Xt
i = r(θ ′

t−1,θ
′
t−2, …,θ ′

t−τ ) ·ΦT
j\N; Fit r predicting activity X at time t and node i from θ ′ at

times t−1, …t−τ ;
Ei, j = log (σ(ferror)/σ(rerror)); The EC score between i and j equals the log of the ratio of the

standard deviation of the residuals of the full and reduced
model;

end
end

the streamline-derived prior. Each streamline can
represent multisynaptic or monosynaptic fibers. In
formulating a prior from SC, we encourage activ-
ity to lie along the streamline populations. This
is an intuitive, interpretable, and logical constraint
to add to EC. If there is a strong structural con-
nection between two regions or voxels, it is more
likely to have a substantive connection between them.
Furthermore, physiologically, regions that are not
connected should not communicate without travel-
ing through intermediate regions. Imposing the con-
straint of a prior alongwhichwe hypothesize commu-
nication should lie supresses inferring erroneous con-
nections. This prior is relevant for effective connectiv-
ity approaches, where we are attempting to untangle
directionality and indirect versus direct communic-
ation pathways. So, connections mediated mostly by

intermediate nodes, such as an indirect connection
from region A to region C through intermediate
region B, are explicitly modeled rather than a connec-
tion from region A to C being inferred directly. While
the concept of using SC from tractography to con-
strain fMRI interpretation has been used to interpret
fMRI before (Huang and Ding 2016, Maglanoc et al
2020), the combination with dimensionality reduc-
tion is novel to this work.

We use a formulation of prior-constrained sparse
PCA to incorporate our SC prior in the timeser-
ies dimensionality reduction. The objective func-
tion for this constrained sparse PCA shown in
equation (2); which we have adapted from Dhillon
et al (2014) to include the tractography prior:

−→vi ∗ = argmax
vi,||vi||=1,vTi ,vj=0,i ̸=j,vi≽0

(−→vi T (C+ θ ·PTi Pi
)−→vi −λ · ||−→vi ||1

)
, Pi,j = log

(
Si∩j

)
. (2)

The first term in the objective function enforced
data fidelity. It depends on the covariance C (NROI ×
NROI) betweenmean pairwisemean regional timeser-
ies but is regularized with a structural prior P with an
initial belief θ. The second term, λ ·

∥∥−→vi ∥∥1 , imposes
the L1 sparsity with weight λ. The prior P is a refor-
mulation of the SC matrix into a matrix where the
rows correspond to the individual regions and the
columns correspond to a larger network each region

can be grouped into. See supplemental section 9.1.4
for further details.

This approach has three advantages over the
standard Granger causal measure. First, it incorpor-
ates prior information to regularize fMRI interpreta-
tion. Second, it reduces the number of measure para-
meters that must be tuned. In SP.GC, only the max-
imum lag needs be selected for the method as the
prior belief weight (θ in equation (2) is fixed at 1 for all
experiments, giving equal weighting to the calculated
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Figure 1. Subject selection. (A) CONSORT diagram of data selection. Subjects were filtered by completeness of data, concomitant
drug use, and then sorted by lowest mean framewise displacement. A demographically representative set of the 100 lowest motion
subjects was chosen for the final analysis. (B) Efficacy of HCP partitioning. The distribution of mean framewise displacement for
all subjects is shown versus each of the selected demographic subsets. Male subjects are indicated with a blue dot while female
subjects are indicated with an orange dot.

covariance and the prior. GC with an elastic net
requires selection of: (1) an L1/L2 ratio, (2) pen-
alty weight, and (3) testing of multiple lags up to
and including the maximum lag. In practice, for a
given maximum lag, only 1 model needs to be fit for
SP.GC, while fitting the standard GC requires dozens
of cross-validated models to be fit to properly optim-
ize the lag and regularization parameters. A suffi-
ciently large lag selected before dimensionality reduc-
tion appropriately weights the lag values through the
dimensionality reduction itself (DSouza et al 2017).
Third, SP.GCmodel fitting is faster than standardGC,
as there are fewer variables as the number of compon-
ents is much less than the number of regions.

In this study, the Schaefer functional atlas
(Schaefer et al 2018) is used with the cerebellum
and striatum added from the AAL atlas (Rolls et al
2020). The Schaefer atlas has the advantage that each
ROI is assigned a corresponding coarse and fine RSN
label facilitating the construction of our RSN SC
prior. We generate two SC network priors, a coarse
one with 18 regions (7 RSNs, subcortical structures,
and the left and right hemisphere cerebellar gray
matter), as well as a fine prior with 38 regions (17
RSNs, subcortical structures, and the left and right
hemisphere cerebellar gray matter). The coarse SC
prior encourages functional connections that capture
left/right hemisphere connections at a whole RSN
level, while the fine SC prior encourages the pro-
jection of whole brain functional activity to smaller
subsections of structurally connected sub-elements
of the larger RSNs. We denote the SP.GC approach
using the coarser 7 RSNprior SP.GCc:7 and the SP.GC
approach using the finer 17 RSN prior SP.GCf:17.

As a baseline of comparison, we also choose to
use a PCA projection to a number of components
preserving 95% of the variance in the timeseries,
analogous to previous work (Luo et al 2013, Abidin
et al 2019, Chockanathan et al 2019). The baseline
measure does not impose the SC prior. This meas-
ure can be computed with algorithm 3, using a PCA
projection rather than a structurally-constrained

projection.Wedenote this PCA-projected lowdimen-
sional Granger scored measure PC.GC.

2.2. Materials
This work uses fMRI data from the HCP (van
Essen et al 2012) to evaluate the proposed con-
nectivity measures. We use the four scans of each
participant, including on one day: (i) a left-to-
right phase-encoded fMRI acquisition and (ii) a
right-to-left phase-encoded fMRI acquisition, and on
a subsequent day: a repeated (iii) left-to-right and (iv)
a right-to left acquisition. Themeasures are evaluated
for their ability to produce a consistent connectivity
matrix across the repeat scans for each subject.

From theHPC database, 805 subjects have the full
complement of four repeat scans and demographic
information. From these we excluded subjects with
substance use (including alcohol and tobacco), as
these are known to confound the reproducibil-
ity of longitudinal connectivity. Of the remaining
517 subjects, we selected 100 subjects which were
demographically diverse and had the least head
motion defined by mean framewise displacement
between fMRI frames. This minimizes motion con-
founds which can influence connectivity measures
with correlated non-neural signal (Noble et al 2019,
Satterthwaite et al 2019). Subjects were selected to
match the demographics of the 2010 USA census data
(subject distribution shown in figure 1(B)) and the
CONSORT diagram of data selection is shown in
figure 1(A). I.E. as the 2010 census distribution was
61.5% white, 17.6% Hispanic/Latino, 12.3% Black,
8.6% other, 62 white, 18 Hispanic, 12 Black, and 8
other subjects were chosen, with an evenmale/female
split. A plot of the mean framewise displacement of
the selected subset of 100 subjects versus the 517 ini-
tial subjects (figure 1(B)), shows the motion level of
the chosen set compared to the remainder of HCP
under consideration. This selected subset of subjects
is later further split for cross-validation of reprodu-
cibility and for nested cross-validation for predicting
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of target values (with multiple train, validation, and
test splits in the nested case).

The selected data was processed with the standard
HCP minimal preprocessing pipeline (Glasser et al
2013). Mean regional timeseries were then extrac-
ted with the Schaefer atlas with 100 anatomical
regions with additional subcortical regions included
(Schaefer et al 2018). The Schaefer atlas with 100
regions was chosen over the 200 or 400 region parcel-
lations to decrease computation timewhile remaining
sufficiently large to test our approaches. The Schaefer
atlas is a functional atlas whose regions are defined
through the clustering of functional activity in fMRI
(Schaefer et al 2018), and this functional atlas was
chosen because: (1) a functional atlas tends to capture
better functional variability than a purely anatomical
atlas (Mellema et al 2022), and (2) the Schaefer atlas
groups regions into resting-state networks (RSNs),
which facilitates inter and intra RSN partitioning
and analysis. The cerebellum and striatum from the
AAL atlas (Rolls et al 2020) were included as well
because both structures contain signals of diagnostic
importance and are often overlooked in prior analyses
(Stoodley et al 2012).

2.3. Experiment 1: comparison of reproducibility
The reproducibility of the connectivity measures was
quantified using five different metrics. These repro-
ducibility metrics include linear, nonlinear, and clus-
tering metrics. The linear metrics included: (1) the
average root mean squared difference of each element
in the connectivity matrix (after z-score normalizing
the elements) across runs of the same subject, and (2)
the Pearson’s Correlation, r, between the connectiv-
ity elements (edges) of any two pairs of scans of the
same subject, averaged over all pairs of scans. The
nonlinear metrics of reproducibility included: (1) the
average cosine similarity between all edges of any two
pairs of scans of the same subject, and (2) the two-way
random, single score intraclass correlation coefficient
(ICC(2,1)) edgewise (Noble et al 2019) between any
two scans of the same subject. Additionally, a clus-
tering score for each EC or FC measure was calcu-
lated. This clustering score was the Davies-Bouldin
(DB) index (Bezdek and Pal 1998). This index quan-
tifies how well each subject is separated from all the
subjects after projection to a low dimensional space
and a higher value indicates greater separation (Finn
et al 2015). A higher DB score indicates that a more
subject-specific fingerprint was identified, capturing
aspects of connectivity unique to that subject. Finally,
as an additional post-hoc analysis we evaluated how
well each measure performed when given less and
less of the timeseries data duration. This tested
each measure’s ability to maintain high reproducib-
ility using a fraction of the timeseries, which could
enable shorter acquisitions facilitating future fMRI
studies.

2.4. Experiment 2: comparison of predictability of
individuals’ traits
In addition to reproducibility metrics, using the
subset of EC and FC measures that had the highest
reproducibility we tested how well the connectivity
measures could predict three categories of targets:
a physiological trait, cognitive trait, and a com-
bined physiological and cognitive trait. The physiolo-
gic trait chosen from the HCP dataset was mean
arterial blood pressure, the cognitive trait was fluid
intelligence as measured with the Pennsylvania mat-
rix reasoning test, and the combined physiologic and
cognitive trait was the stress and adversity inventory.
The combination of physiologic, cognitive, and com-
bined traits was chosen to be more representative of
possible real-world targets than a random selection
of predictable values. Each of these targets is a single
scalar value per subject, averaged over all their visits.
i.e. for the first subject’s four scans, there is one scalar
target to predict from each of the connectivity ‘finger-
prints’. Cross-validation partitioning was performed
grouped at the subject level so that a subject’s scans
are contained in one partition.

2.4.1. Univariate analysis of effect size
To evaluate how predictive the connectivity meas-
ures are, first we performed a univariate analysis. The
effect size per edge was measured with Cohen’s d
and compared across the measures with high repro-
ducibility, as measured by Pearson’s r and measured
with the individual subject clustering score in order
to compare predictive information present in the cal-
culated connectivity. An ideal measure will have high
reproducibility and high effect size across a variety of
predictive tasks.

2.4.2. Multivariate analysis
Univariate analysis does not suffice to show that a
connectivity measure is apt to yield accurate mul-
tivariate predictions. Therefore, we also selected sig-
nificant edges (univariate significance p ⩽ 0.05) as
candidate covariates to form multivariate predictive
models for each connectivity measure. To reduce col-
linearity, pairs of such edges with covariance greater
than 0.75 were identified and the edge with higher
effect size was retained. The surviving set of edges was
used to predict the targets as in experiment 1 with
an elastic net predictor and the predictive power was
measured. A 10 × 5 cross-validation approach was
applied. In the 10-fold cross validation, the data was
stratified by the target measure and 10% of subjects
were set aside to test each iteration. The inner 5-fold
cross validation performed hyperparameter optimiz-
ation where the elastic net’s L1 /L2 ratio was tuned
with a grid search using ratios from the set {0.1, 0.5,
0.7, 0.9, 0.95, 0.99, 1.0}. A nested cross-validation
approach was chosen because it tends to provide a
low bias estimate of real-world performance (Cawley
and Talbot 2010). The regularization weight, α, was
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optimized through coordinate descent, and themodel
with the lowest mean squared error across the inner
cross validation folds was evaluated on the 10% test
set from the outer fold.

The entire procedure was itself repeated ten times
using Monte Carlo iteration as this has been shown
to increase the stability of the estimated prediction
(Wu et al 2020). The coefficient of determination,
R2, of the internally fitted model on the held-out
data and averaged over outer Monte Carlo itera-
tions was recorded. A paired one-tailed t-test test-
ing the null hypothesis that the highest performing
model’s R2 was not greater than other models′ R2

was performed. TheBonferroni corrected p-valuewas
reported. Bonferroni correction was chosen to min-
imize type 1 errorwith a criterionmore stringent than
FDR correction for answering the specific question of
which predictor produces the highest R2.

2.4.3. Multi-input, multivariate analysis
An additional post-hoc analysis was performed
to further measure the complementarity of the
connectivity measures from the trait predictions
described in section 2.4.2. This secondary analysis
determines which connectivity measures contain
complementary information and compares models
built with a combination of complimentary measures
to the models built on the original separate meas-
ures. To determine measure complementarity, a lin-
ear mixed effects (LME) model was fit to predict a
participants’ trait by combining the predictions from
multiple models each using a single separate con-
nectivity measure. For example, the predicted mean
arterial pressure predicted from partial correlation
was concatenated with the predicted arterial pressure
from the other FC connectivity measures into a vector,
and that vector of predictions was used to predict
mean arterial pressure. If partial correlation contains
trait predictive information that ML.FCERT does not
and vice-versa, we would expect the LME model to
give significant weight to predictions generated from
both partial correlation and ML.FCERT. If one of the
measures contains only a subset of the information
contained by another, the measure with greater pre-
dictive information will be assigned a large weight,
whilst the other measure will be assigned a small
weight close to zero. The LME models were fit with
a subject-specific intercept and group level slope per
equation (3):

yj = µ0,j +β1x1,j +β2x2,j + . . .+βnxn,j + ϵj (3)

where j indexes the subject and n is the number
of measures combined from section 2.4.2. The pre-
dicted trait for a subject, yj, is a function of the
subject-specific intercept (µ0,j) and the weights (βi)
on the prediction from each of the n measures. Each
predictor (xn,j) is the predicted value of subject j’s
trait (e.g. predicted mean arterial pressure, stress, or

fluid intelligence) from each of the n elastic models
trained from a single measure (e.g. partial correla-
tion). The fitted LME coefficients with p ⩽ 0.05 and
magnitude greater than 10% of the maximum coef-
ficient magnitude were considered to contain com-
plimentary information in the predictions. This pro-
duced a subset of complimentary connectivity meas-
ures that could then be used in another multi-input,
multivariate elastic net model. This secondary model
with complimentarymeasures was also fit with 10× 5
cross-validation and compared to the original mod-
els, to test the benefit of combining the compliment-
ary features.

3. Results

3.1. Experiment 1: comparison of reproducibility
3.1.1. Comparison of the reproducibility of functional
connectivity
The reproducibility of six functional connectivity
metrics: (1) Pearson’s correlation based connectiv-
ity, (2) partial correlation connectivity, (3) spectral
GC functional connectivity (denoted SG.FC), and
ML.FC based connectivity (4) with XGB, (5) with
extremely random trees, and (6) with a radial basis
function support vector regressor was quantified with
five metrics. These metrics included: Pearson’s r, root
mean square error (RMSE), ICC, cosine similarity,
and the ease of separability (DB clustering score) as
described in section 2.3. The results from these com-
parisons are shown in table 1 with the five right most
columns showing the mean reproducibility and 95%
confidence interval. The best reproducibility in each
column is in boldface. The significant differences
(FDR corrected p-value < 0.05) between the top res-
ult and the other entries within a column are denoted
with an asterisk, ∗. FDR Correction was chosen over
familywise type 1 error rate control as we have higher
tolerance for type 1 errors and lower tolerance for
type 2 errors in this relatively broad comparison using
multiple measures. The proposed metrics are distin-
guished with a grey background. Of all the FC met-
rics, the proposed ML.FCXGB connectivity had the
highest Pearson’s r and cosine similarity, as well as
the lowest RMSE. Partial correlation connectivity had
the best (lowest) DB index while, correlation-based
connectivity had a higher ICC than any other met-
ric; however, this metric is less sparse than the other
metrics which could artificially inflate this measure
for correlation. Though RMSE is a suboptimal met-
ric of reproducibility across multiple metric types
due to the different distributions and sparsity of the
FC metrics, it is shown in order to facilitate com-
parisons to the literature. Pearson’s r which is less
susceptible to scale variations and sparsity, and the
DB clustering score, which captures subject identi-
fiability, were selected as measures for further ana-
lysis. A comparison of the six FC methods along
these two metrics is shown in figure 2. Under the X
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Table 1. Comparison of the reproducibility of the six FC methods including proposed (gray shaded) and traditional (nonshaded)
functional connectivity measures. The section of this article where the measure is described is indicated in the Section column. The best
performing methods in each metric are shown in boldface. Statistically significant differences from the best performing method after
FDR correction at 5% are indicated with ∗. Corr= correlation, PCorr= partial correlation, SG.FC= spectral Granger causality
functional connectivity,ML.FCERT =machine learning functional connectivity using an extremely random trees predictor,
ML.FCSVM =machine learning functional connectivity using a support vector regressor,ML.FCXGB =machine learning functional
connectivity using an XGB model.

Linear Nonlinear Clustering

FC measure ( =ours) Section Pearson’s r RMSE ICC(2,1) Cosine similarity Clustering DB score

Corr 1 0.40± 0.00∗ 0.70± 0.02∗ 0.43± 0.0 0.75± 0.01 10.5± 1.0∗

PCorr 1 0.44± 0.00∗ 0.49± 0.00∗ 0.07± 0.00∗ 0.88± 0.00∗ 0.23± 0.01

SG.FC 1 0.31± 0.01∗ 0.92± 0.02∗ 0.29± 0.00∗ 0.57± 0.02∗ 13.2± 1.0∗

ML.FCERT 2.1.1 0.42± 0.00∗ 0.56± 0.01∗ 0.31± 0.00∗ 0.84± 0.01∗ 5.55± 0.55∗

ML.FCSVM 2.1.1 0.35± 0.00∗ 0.79± 0.01∗ 0.27± 0.00∗ 0.68± 0.01∗ 8.00± 0.97∗

ML.FCXGB 2.1.1 0.46± 0.00 0.40± 0.00 0.06± 0.00∗ 0.93± 0.00∗ 3.14± 0.30∗

Figure 2. Reproducibility of functional connectivity measures across repeat scans as measured by Pearson’s r and Davies Bouldin
Index. This figure shows the distribution of reproducibility as measured by Pearson’s r and DB clustering score for every pair of
FC matrices in the four repeat-scan set per subject. Superior reproducibility for both metrics is found at the top of the graph. The
mean FC matrix for each measure is displayed under the x axis.

axis, the mean connectivity matrix is shown which is
computed across all subject scans for each method.
The ordering of the anatomy and RSNs across the
columns and rows within each matrix is detailed in
supplementary figure S1. The proposed ML.FCXGB

with XGB connectivity metric (right) had the best
reproducibility by most measures (bold in table 1)
including Pearson’s r, while partial correlation had the
second best for most measures except DB score, for
which it had the best. This suggests conditioning the
connectivity between two nodes on the activity of all
other nodes is critical for reproducibility.

3.1.2. Comparison of the reproducibility of effective
connectivity
The effective connectivity measures were evaluated
with Pearson’s r, RMSE, ICC, cosine similarity, and
the ease of separability via the DB score, as described

in section 2.3. The results from these comparisons are
shown in table 2. Significant differences are denoted
with an asterisk and the most reproducible measure
in each column is boldfaced. The proposed metrics
are distinguished with a grey background. We note
that the ICCmetric for measuring the reproducibility
of the GC connectivity measures is influenced by
the sparsity of the connectivity measure. The pro-
posed ML.ECERT connectivity with extremely ran-
dom trees predictor outperformed all other tradi-
tional and proposedmethods across allmetrics except
clustering, where it provided a respectable perform-
ance close to the median among the tested methods.
The proposed ML.ECERT connectivity outperformed
the proposed ML.ECSVM with SVM implementation
across all reproducibilitymeasures, suggesting superi-
ority of the ERT based predictor for this connectivity
measure.
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Table 2. Comparison of the reproducibility of the six EC methods including proposed (gray shaded) and traditional (nonshaded)
functional connectivity measures. The section where the measure is described is indicated in the Section column. The best performing
methods in each metric are shown in boldface. Statistically significant differences from the best performing method after FDR
correction at 5% are indicated with ∗.MV.GC= Granger causality measured with an unpenalized MVAR model,
MV.GCE:λ=0.1 = Granger causality measured with an elastic MVAR model with equal L1 and L2 penalties and a regularization
parameter of 0.1,MV.GCE:λ=10 = Granger causality measured with an elastic MVAR model with equal L1 and L2 penalties and a
regularization parameter of 10,ML.ECERT =machine learning effective connectivity using an extremely random trees predictor,
ML.ECSVM =machine learning effective connectivity using a support vector machine regressor, PC.GC= low dimensional Granger
causality measured with an MVAR model in PCA space, SP.GCc:7 = structurally projected Granger causality measured with an MVAR
model in the low dimensional space informed by the structural prior using seven resting state network sub-parcelations,
SP.GCf:17=structurally projected Granger causality measured with an MVAR model in the low dimensional space informed by the
structural prior using 17 resting state network sub-parcelations.

Linear Nonlinear Clustering

EC measure ( =ours) Section Pearson’s r RMSE ICC(2,1) Cosine similarity Clustering DB score

MV.GC 2.1.2 0.17± 0.00∗ 1.15± 0.01∗ 0.10± 0.00∗ 0.34± 0.01∗ 11.0± 1.1∗

MV.GCE:λ=0.1 2.1.2 0.29± 0.00∗ 0.93± 0.01∗ 0.01± 0.00∗ 0.57± 0.01∗ 3.97± 0.39∗

MV.GCE:λ=10 2.1.2 0.32± 0.01∗ 0.85± 0.02∗ 0.00± 0.00∗ 0.64± 0.01∗ 5.78± 0.44∗

ML.ECERT 2.1.3 0.47± 0.00 0.37± 0.01 0.39± 0.00 0.93± 0.00 6.50± 0.52∗

ML.ECSVM 2.1.3 0.31± 0.00∗ 0.90± 0.01∗ 0.22± 0.00∗ 0.59± 0.01∗ 10.4± 1.4∗

PC.GC 2.1.4 0.33± 0.01∗ 0.82± 0.02∗ 0.15± 0.00∗ 0.67± 0.01∗ 6.84± 0.36∗

SP.GCc:7 2.1.4 0.32± 0.00∗ 0.84± 0.01∗ 0.07± 0.00∗ 0.65± 0.01∗ 3.00± 0.36
SP.GCf:17 2.1.4 0.36± 0.00∗ 0.76± 0.01∗ 0.06± 0.00∗ 0.73± 0.01∗ 4.32± 0.39∗

The regularized GC connectivity measures from
the elastic MVAR model (MV.GCE) performed sig-
nificantly better than the unregularized GC meas-
ure (MV.GC). The higher elastic penalty (λ= 10)
increased Pearson’s r relative to the lower elastic pen-
alty (λ= 0.1), and the lower elastic penalty had a
superior cluster separability. The proposed structur-
ally projected GCmethod, SP.GCf:17, attained greater
reproducibility than either the elasticMV.GCE or the
PG.GC connectivity measures in its cosine similarity,
and was also better in othermeasures of reproducibil-
ity including Pearson’s r andRMSE. To further under-
stand the differences between the GC connectivity
metrics (MV.GC, PC.GC and SP.GC), we quantified
the stability of these measures as a function of the
amount of scan time (fMRI timeseries length) used
tomeasure the causal connectivity. Notably, SP.GCf:17

using 50% of the initial timeseries has a higher repro-
ducibility than theMV.GCE or PG.GCmethods using
100% of the timeseries.

Full results of the GC comparison are shown
in supplementary figure S2. The stability of the
SP.GCf:17 projectionusing short timeseries has poten-
tial for tangible benefit to analyze data from studies
with limited fMRI acquisition duration.

The distributions of Pearson’s r and the clustering
score for each of the ECmetrics are shown in figure 3.
This view manifests the clearly superior performance
of ML.ECERT connectivity along the Pearson’s r met-
ric as well as the reasonable clustering performance.
Below each measure is the mean connectivity matrix
across all subject scans for each measure. The order-
ing of the anatomy and RSNs across the columns and
rows within each matrix is detailed in supplementary
figure S1.

3.2. Experiment 2: comparison of predictability of
individuals’ traits
3.2.1. Comparison of trait predictability using the
proposed functional connectivity measures
The ability of the connectivity metrics to predict
subject level traits was evaluated in the second exper-
iment. The most reproducible FC proposed meas-
ures (ML.FCERT and ML.FCXGB) were compared to
traditional methods of FC: correlation and partial
correlation-based connectivity (figure 4). We first
performed the univariate analysis of effect size per FC
edge as described in section 2.4.1. Figure 4(A) shows
the effect size of the top 50 edges in predicting mean
arterial pressure, figure 4(B) shows the effect size of
the top 50 edges in predicting stress, and figure 4(C)
shows the effect size of the top 50 edges in predict-
ing fluid intelligence. The results indicate that the
effect sizes of the different methods are comparable
for the different predictions except for fluid intelli-
gence, where Correlation and ML.FCERT gave super-
ior performance.

Next, a multivariate analysis was performed
(section 2.4.2) in which multiple edges were com-
bined into one model to quantify whether the edges
contain complementary information and determine
which measures contain the largest total information
about the prediction targets. Figure 4(D) shows theR2

on the held-out test data. For all three targets, mul-
tivariate connectivity from ML.FCXGB gave the top
performance, followed closely behind by partial cor-
relation. ML.FCERT and correlation were distant 3rd
and 4th place finishers.

Using the elastic net predictions themselves as
input to an LME model allowed us to determine
which predictionswere complementary (table 3).Our
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Figure 3. Reproducibility of effective connectivity measures across repeats as measured by Pearson’s r and Davies Bouldin index.
The distribution of reproducibility as measured by Pearson’s r and DB clustering score for every pair of EC matrices in the
four-scan set per subject is shown. Superior reproducibility for both scores is found at the top of the graph’s Y axes. The mean EC
matrix for each measure is displayed under the x axis.

Figure 4. Predictive ability of FC measures. (A) Shows the effect sizes of the most reproducible FC measures when used to regress
a physiologic target: mean arterial blood pressure. (B) Shows the effect sizes of the most reproducible FC measures when used to
regress a physiologic and cognitive target: stress. (C) Shows the effect sizes of the most reproducible FC measures when used to
regress a cognitive target: fluid intelligence. (D) Shows the performance (as measured by R2) of a model trained using the top
edges± the 95% CI for each FC connectivity method over ten outer random permutations of the data and ten inner cross
validation folds. The top edges used were all edges from the univariate analysis of the training set with p⩽0.05. Significant
differences from top performer were calculated with a Bonferroni corrected one-sided t test. p> 0.05, p< 0.05, p< 0.01,
p< 1× 10−3, and p<1× 10−4 are indicated with ns, ∗, ∗∗, ∗∗∗, or ∗∗∗∗ respectively.

definition of complementarity here stems from the
concepts outlined in section 2.4.3, where the ability

of the model to predict from combinations of EC and

FCdata is analyzed. Complementarity then, is defined
as having independent predictive power that is not

found in other methods though the magnitude of

appropriately regularized coefficients. In this case we

observed that combining the complimentary features

did not provide a statistically significant improve-
ment in prediction accuracy. ML.FCXGB contained
the information present in the other measures in all
cases except mean arterial pressure. For that target,
ML.FCXGB and partial correlation contained compli-
mentary information. The results from figure 4 and
table 3 suggest that the boostingmethod ofML.FCXGB

is particularly well-suited to regularize and discover a
stable set of connectivity features, perhaps because of
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Table 3. Complementarity of EC and FC measures. For each set of EC and FC measures, the predicted scores from the elastic-net
predictions were fed into a secondary LME model with subject-specific intercepts and group level slopes. This tested for complimentary
information contained in the predictions. Those predictions using connectivity metrics were considered to contain complimentary
information if the fitted coefficient had a p-value⩽0.05 and a magnitude greater than or equal to 10% of the maximum coefficient
magnitude. The coefficients are displayed below, with p values in parentheses. Complimentary sets of connectivity features are indicated
with boldface.

Functional connectivity measure

Prediction target Corr PCorr ML.FCERT ML.FCXGB

Mean arterial pressure −0.02 (0.00) 0.10 (0.00) 0.02 (0.07) 0.92 (0.00)
Perceived stress −0.02 (0.05) 0.06 (0.00) 0.01 (0.14) 0.97 (0.00)
Fluid intelligence −0.02 (0.00) 0.00 (0.94) −0.01 (0.01) 1.03 (0.00)

Effective connectivity measure

Prediction target MV.GC MV.GCE:λ=0.1 PC.GC SP.GCf:17

Mean arterial pressure −0.05 (0.17) 0.74 (0.00) 0.08 (0.00) 0.24 (0.00)
Fluid intelligence −0.35 (0.49) 0.31 (0.00) 0.52 (0.00) 0.24 (0.00)
Perceived stress 0.24 (0.00) 0.22 (0.00) 0.63 (0.00) 0.28 (0.00)

Figure 5. Predictive ability of EC measures. (A) Shows the effect sizes of the most reproducible EC measures when used to predict
a physiologic target: mean arterial blood pressure. (B) Shows the effect sizes of the most reproducible EC measures when used to
predict a physiologic and cognitive target: stress. (C) Shows the effect sizes of the most reproducible EC measures when used to
predict a cognitive target: fluid intelligence. (D) Shows the performance (as measured by R2) of a model trained using the top
edges± the 95% CI for each EC connectivity method over ten outer random shufflings of the data and ten inner cross validation
folds. The top edges used were all edges from the univariate analysis of the training set with p⩽ 0.05. Significant differences from
top performer were calculated with a Bonferroni corrected one-sided t test. p> 0.05, p< 0.05, p< 0.01, p<1× 10−3, and
p<1× 10−4 are indicated with ns, ∗, ∗∗, ∗∗∗, or ∗∗∗∗ respectively.

its multiple-bagging approach used to handle multi-
collinearity.

3.2.2. Comparison of trait predictability using
proposed effective connectivity measures
The predictive ability of the different effective con-
nectivity metrics was evaluated by comparing tradi-
tional EC measures of GC, regularized GC with an
elastic penalty, and PC.GC to the most reproducible
proposed metrics,ML.ECERT with the extremely ran-
dom trees predictor and SP.GC.

Figures 5(A)–(C) shows the results from the uni-
variate analysis (section 2.4.1). We observed that
the highest Cohen’s d was attained for connec-
tions measured with PC.GC (red) and ML.FCERT

(green) followed by SP.GC (purple). Figure 5(D)
shows the performance of multivariate predictive
models trained on a set of all edges with uni-
variate p-value ⩽0.05 (section 2.4.2). The pro-
posed SP.GC method (purple) and PC.GC (red)
explained the most variance, followed by ML.ECERT

(green).

13



J. Neural Eng. 20 (2023) 066023 C J Mellema and A A Montillo

The multivariate models (figure 5(D)) revealed
that the SP.GC set of edges (purple) tended to contain
more total information than the connections com-
puted with the remaining connectivity methods and
achieved the highest performance predicting arter-
ial pressure and stress. In close second place was the
PC.GC connectivity measure (red), which achieved
the highest performance predictive fluid intelligence.

A multi-input analysis (section 2.4.3) was per-
formed to test complementarity across the EC meas-
ures using an LME model. From the results in
table 3 (bottom), we observe that SP.GC, PC.GC, and
MV.GCE:λ=0.1 contained complimentary informa-
tion for all prediction targets. However, combining
complimentary features did not provide a statistic-
ally significant improvement for target prediction.
This suggests that the regularizing causal measures,
via a low dimensional projection or an elastic pen-
alty, extract different information. Furthermore, the
cross-prediction comparison indicates that the single
connectivity feature most apt to make a given predic-
tion is somewhat problem specific, but SP.GC and
PC.GC are well-suited to the variety of prediction
tasks examined here.

4. Discussion

Among functional connectivity measures, ML.FCXGB

had the highest reproducibility across most metrics.
The overall predictive power to predict mean arter-
ial pressure, stress, and fluid intelligence using the
multivariate models was also highest for ML.FCXGB.
Additionally, our separate analysis of complementar-
ity using second level LME models revealed that the
ML.FCXGB approach contained most of the informa-
tion present in the other FC measures. These results
suggest thatML.FCXGB be used as the functional con-
nectivitymetric of choice on larger datasets. If there is
not enough data to effectively fit theML.FCXGB across
subjects, thenwe recommend the use of partial correl-
ation based functional connectivity, which also per-
formed well and just behindML.FCXGB.

Among effective connectivitymeasures,ML.ECERT

performed better in reproducibility than other meas-
ures, but suboptimally in the predictive power ana-
lysis, suggesting the presence of strong intra-edge
correlation and redundant (collinear) information.
However, SP.GC performed second highest in repro-
ducibility and was also themost predictive connectiv-
ity feature set in two of our three prediction mod-
els. Our analysis of reproducibility using fractional
timeseries further revealed that SP.GCf:17 (a specific
formulation of SP.GC) achieved high reproducibil-
ity even when applied to a small portion of the fMRI
timeseries (supplementary figure S2). Our comple-
mentarity analysis using LME models, showed that
each of the top EC methods contained information

complimentary to each other. Collectively these res-
ults indicate that: (1) the incorporation of a structural
prior to the SP.GCf:17 measure appropriately con-
strained the GC score with higher predictive power
and reproducibility than a standard PCA projection,
and (2) the SP.GCf:17 measure may be recommen-
ded as a method for effective connectivity measure-
ment. If appropriate dMRI priors are unavailable,
we recommend either (1)ML.ECERT to capture non-
linear EC connectivity with high reproducibility, or
(2) PC.GC if predictive power is prioritized over
reproducibility.

Prior literature focused on the reproducibility of
functional connectivity, using Pearson’s r or partial
correlation (Guo et al 2012, Fiecas et al 2013, Liao
et al 2013, Andellini et al 2015, Termenon et al 2016,
Geerligs et al 2017, Pannunzi et al 2017, Wang et al
2017, Noble et al 2017a, 2017b, 2019). Measures of
reproducibility can be highly confounded (usually
inflated) by motion, therefore the selection of sub-
jects was aimed to minimize this confound (Noble
et al 2019). Our estimates of reproducibility of FC
measures is somewhat lower than prior reports in the
literature (Noble et al 2017a) which is likely a res-
ult of our strict motion thresholds limiting the infla-
tion of regional correlation frommotion. This is sup-
ported by previous reviews of connectivity (Noble
et al 2017b, 2019). The aforementioned prior research
characterizes the reproducibility of correlation and
partial correlation well, but used a limited set of reli-
ability metrics, typically ICC or R2 (Termenon et al
2016, Waller et al 2017, Noble et al 2017a). This study
complements the prior work in three ways. First, we
provide a characterize reproducibility using a multi-
tude of metrics (linear, nonlinear, and clustering).
Second, we characterize predictive power using sev-
eral metrics (ICC, R2, cosine similarity, DB score,
and accuracy across three relevant neurophysiologic
targets). Finally, we propose new measures of con-
nectivity, quantify their reproducibility, and compare
them to traditional measures. These proposed meas-
ures proved to be the most reproducible and con-
tained the greatest predictive power of the FC meas-
ures analyzed. The measure proposed by Murugesan
et al (2020) is a special case of the generalized frame-
work for ML.FC proposed in this work. Our frame-
work generalizes across model types (SVM, ERT,
and XGB), hyperparameter optimization, develops
machine learning connectivity measures for both FC
and EC, and adds regularization priors, while the
measure in (Murugesan et al 2020) only pertains to
FC. Additionally, we evaluate the reproducibility of
the proposedmodels, which is absent from such prior
literature.

Examinations of the reproducibility of effect-
ive connectivity have been limited to bivariate GC
(Fiecas et al 2013), which is a Granger causal estim-
ate using only pairs of regional timeseries, rather than
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the more comprehensive multivariate estimates using
all regional timeseries employed in this study. This
research drives the study of the reproducibility of EC
measures beyond bivariate GC analysis. Furthermore,
although many studies do not characterize per-
formance, reproducibility is necessary but insuffi-
cient quality of a desirable neuroimaging predictor
(Termenon et al 2016, Waller et al 2017, Noble et al
2017a, 2017b). Our analysis of predictive power over
multiple tasks addresses this gap as well.

When comparing EC and FC measures, the
best FC measures had slightly higher reproducibil-
ity and predictive power than the best EC measures.
However, FC and EC capture different connectivity
information and should be considered compliment-
ary rather than competing. FC, for example, may cap-
ture longer range interactions, while shorter direct
interactions may be better captured by EC. If inter-
pretability is the most important criterion, then we
recommend the use of SP.GCf:17. If predictive per-
formance is the most important criterion, then we
recommend ML.FCXGB. If both are equally import-
ant, we recommend combining the two, using the
top X percent of informative edges (from a univariate
analysis) from each measure, where X is determined
based on the number of samples in the study so as to
make the ratio of features to samples tractable to train
a predictive model without overfitting.

There are several limitations of this research. First,
comparison of reproducibility across different con-
nectivity types can be problematic when the distri-
bution of recovered connectivity values is concen-
trated to a few values. For example, a calculated
GC connectivity with an elastic penalty where the
λ penalty is extremely high can have 99% values of
0 connectivity, and the remaining nonzero connec-
tions can be uniformly distributed on a logarithmic
scale within the range [0,∞] . On the other hand,
correlative connectivity values are within the range
[−1,1] and tend to be more normally distributed.
By using multiple metrics of comparison including
several metrics of both reproducibility and predictive
power, we increase confidence in the relative useful-
ness of the analyzed connectivity measures. However,
additional reproducibility metrics could be explored.
For example, summary graph connectivity measures
may exhibit useful predictive properties and reliabil-
ity, but the differing sparsity between methods would
need to be addressed to make such a comparison.
The second limitation is that metrics of connectivity
and reproducibility can be dependent upon prepro-
cessing decisions, number of subjects, and number
of replicates per subject. Future studies could explore
the dependency of FC and ECmeasures to denoising,
global signal regression, and choice of atlas, as well as
look at similarity among the new and classic methods
in terms of edge similarity, measures of graph simil-
arity, and how these change with more noise added.
When additional large-scale datasets with multiple

replicates per subject become available, further work
on reproducibility acrossmore replicates and subjects
would also be valuable and welcome. Finally, the third
limitation is that, in an effort to focus on the abil-
ity of measures to quantify biological variability and
not merely quantify motion artifacts, we purpose-
fully chose a sample of subjects with exceptionally
low motion. As researchers implement better prac-
tices which yield lower and lower intrinsic motion
and as motion suppression methods improve, our
choice becomes more and more reasonable. However
we emphasize that our results pertain to studies with
lowmotion, long scan times, and high temporal resol-
ution. Furthermore, we chose to use all available data
per subject, including four longer-duration scans per
subject to make each prediction, which can increase
the estimated R2. The real-world ability to predict in
these domains we would expect to be roughly uni-
formly lower for all methods, however, this study
quantified the relative ability of the models to make
predictionswithin a dataset with lower motion. A full
study estimating the real-world power of these meth-
ods is beyond the scope of this work, which proposes
and tests the internal validity of novel algorithms.
However, we have also successfully made realistic pre-
dictions with these measures in a Parkinson’s disease
predictive modeling system, and direct the reader to
that body of work (Mellema et al 2023).

5. Conclusions

This study proposes a functional connectivity met-
ric (ML.FC) and an effective connectivity metric
(ML.EC) that efficiently capture nonlinear associ-
ations between brain regions. This study also pro-
poses a connectivity metric (SP.GC) that encour-
ages the connectivity recovered from fMRI to respect
underlying biological SC and efficiently measures
causal associations across all brain regions, which
provides researchers new capabilities for connectiv-
ity analysis. This study compared the proposed meas-
ures to traditional ones using quantitative repro-
ducibility metrics and by quantifying their capacity
to make accurate predictions of traits of individual
subjects to show the internal validity of these pro-
posed metrics. This included a physiologic trait, cog-
nitive trait, and combined physiologic and cognit-
ive trait. The proposed measures produced higher
measures of reproducibility and were found to be
more predictive across the traits. Based on the study
results, two of the proposed methods: ML.FCXGB

and SP.GCf:17 are recommended as the connectiv-
ity measures of choice for functional and effective
connectivity, respectively. The contributions of this
work hold potential to further the development of
tools to characterize the human connectome in health
and disease andmake meaningful individualized pre-
dictions of neuropsychological and neurobiological
states.
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